検索
ホームページバックエンド開発Python チュートリアル[CVHSV と RGB: 画像処理における HSV の理解と活用

前回の投稿では、プロットや明るさとコントラストの調整など、OpenCV での RGB イメージの操作の基本について説明しました。 RGB 色空間は、画面から発せられる光の強さで色を表現するため、コンピューターのディスプレイには最適ですが、人間が自然界で色を認識する方法とは一致しません。ここで、HSV (色相、彩度、明度) が介入します。HSV (色相、彩度、明度) は、人間の知覚に近い方法で色を表現するように設計された色空間です。
この投稿では、HSV について詳しく説明し、そのコンポーネントを理解し、そのアプリケーションを探索し、画像を強化するためのいくつかの素晴らしいトリックを学びます。

HSVとは何ですか?

HSV は、色相、彩度、および値の略です:

  • 色相 (H): これは、赤、緑、青などの色のタイプを指します。従来は円形スペクトル (0° ~ 360°) で度単位で測定されていましたが、OpenCV では、色相は 0 にスケールされます。 8 ビット整数に収まるには –179。マッピングは次のとおりです:
  • 0 (またはそれに近い) は依然として赤を表します。
  • 60 ~ 89 は緑に対応します。
  • 120 ~ 149 は青に対応します。
  • 140–179 は赤に戻り、円形スペクトルが完成します。
  • 彩度 (S): これは色の強度または純度を定義します。完全に飽和した色には灰色が含まれず、鮮やかです。彩度が低い色はより色あせて見えます。

  • 値 (V): 明るさと呼ばれることが多く、明るさや暗さを測定します。これらのコンポーネントを分離することにより、HSV は、特に色の検出や強調などのタスクで画像の分析と操作を容易にします。色。

これをよりよく理解するために、プロット ブローは色空間の値をうまく表現したものです

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

OpenCV での画像の HSV への変換

OpenCV で画像を HSV に変換するには、cv2.cvtColor() 関数を使用するのが簡単です。見てみましょう:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

一見すると、HSV プロットは奇妙に見えるかもしれません。ほとんどエイリアンのようです。これは、HSV のコンポーネント (特に色相) が RGB 値に直接マッピングされていないにもかかわらず、コンピューターが HSV を RGB 画像として表現しようとしているためです。例:

  • 色相 (H): 角度として表され、OpenCV では 0 ~ 179 の範囲になります (RGB チャネルのような 0 ~ 255 ではありません)。これにより、RGB ベースのプロットでは色相チャネルが主に青で表示されます。

次の例では、プロフィール画像ではなく、Flux ai 画像生成モデルで生成された暗い画像を使用します。プロフィール画像よりも HSV のより良いユーザーケースを提供し、その効果をよりよく確認できるため

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

ヒストグラムを通じて HSV を理解する

RGB と HSV の違いをよりよく理解するために、各チャネルのヒストグラムをプロットしてみましょう。コードは次のとおりです:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

ヒストグラムから、HSV チャネルが RGB とどのように異なるかがわかります。 HSV の色相チャネルは 0 ~ 179 の値を持ち、個別の色領域を表し、彩度と値は強度と明るさを処理します。

色相、彩度、明度の視覚化

ここで、HSV 画像を個々のコンポーネントに分割して、各チャネルが何を表すかをよりよく理解しましょう。

# Plot the histograms
plt.figure(figsize=(10, 6))

# RGB Histogram
plt.subplot(1, 2, 1)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("RGB Histogram")

# HSV Histogram
plt.subplot(1, 2, 2)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("HSV Histogram")
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

  • 色相: 明確な色の区別を表示し、画像内の主要な色を強調表示します。
  • 彩度: 明るい領域は鮮やかな色を表し、暗い領域はより落ち着いた灰色がかった色調を示します。
  • 値: 明るさの分布を強調表示し、明るい領域がより明るく表示されます。

HSV のトリック

1. 明るさの向上(値の均一化)

照明が不均一な画像の場合、値チャンネルを均等化すると、明るい領域に「グロー」効果を与えながら、暗い領域をより見やすくすることができます。

# Plot the individual HSV channels
plt.figure(figsize=(10, 6))
plt.subplot(1, 3, 1)
plt.imshow(hsv[:, :, 0], cmap='hsv')  # Hue
plt.title("Hue")
plt.subplot(1, 3, 2)
plt.imshow(hsv[:, :, 1], cmap='gray')  # Saturation
plt.title("Saturation")
plt.subplot(1, 3, 3)
plt.imshow(hsv[:, :, 2], cmap='gray')  # Value
plt.title("Value")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

2. カラーエンハンスメント(彩度等化)

彩度チャンネルを高めると、画像内の色がより鮮明で鮮やかになります。

equ = cv2.equalizeHist(hsv[:, :, 2])  # Equalize the Value channel
new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Brightness Enhanced")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

3. カラーフィルタリング (赤の分離)

色相チャンネルを使用すると、特定の色を分離できます。たとえば、赤のトーンを抽出するには:

equ = cv2.equalizeHist(hsv[:, :, 1])  # Equalize the Saturation channel
new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2]))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Color Enhanced")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

このテクニックは、オブジェクト検出、色のセグメンテーション、さらには芸術的効果などのタスクに非常に役立ちます。

結論

HSV 色空間は、画像を分析および操作するための多用途かつ直感的な方法を提供します。 HSV は、色 (色相)、強度 (彩度)、明るさ (値) を分離することで、カラー フィルタリング、強調、セグメンテーションなどのタスクを簡素化します。 RGB はディスプレイに最適ですが、HSV は創造的で分析的な画像処理の可能性を広げます。

HSV のお気に入りのトリックは何ですか?以下であなたの考えを共有し、この鮮やかな色の世界を一緒に探索しましょう!

このバージョンには、読みやすさと理解を向上させるために、スムーズなフロー、詳細な説明、一貫した書式設定が組み込まれています。

以上が[CVHSV と RGB: 画像処理における HSV の理解と活用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

Pythonの実行、それは何ですか?Pythonの実行、それは何ですか?May 14, 2025 am 12:06 AM

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Python:重要な機能は何ですかPython:重要な機能は何ですかMay 14, 2025 am 12:02 AM

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。