検索
ホームページバックエンド開発Python チュートリアルPython の `@property` デコレーターは、特に引数がない場合、どのように機能しますか?

How Does Python's `@property` Decorator Work, Especially Without Arguments?

Python で @property デコレーターをわかりやすく理解する

@property デコレーターは、クラスのプロパティを作成できる Python の便利なツールです。 、通常のクラスのメンバーであるかのように属性にアクセスできるようになります。ただし、このデコレータは次のような疑問を引き起こします。特に引数なしのデコレータとして使用した場合、どのように機能するのでしょうか?

メカニズムの詳細

直感に反して、 @property デコレータはプロパティを直接作成しません。代わりに、特別な記述子オブジェクトを返します。このオブジェクトを属性に割り当てると、その属性がアクセス制限やカスタムのセッター関数やデリーター関数などのプロパティとして動作できるようになります。

たとえば、次のコード スニペットを考えてみましょう。

class Person:
    def __init__(self, name):
        self._name = name

    @property
    def name(self):
        return self._name

ここでは、@property デコレータが name 関数をラップする記述子オブジェクトを作成します。次に、この記述子オブジェクトは Person クラスの name 属性に割り当てられます。

記述子オブジェクト自体には getter、setter、または deleter メソッドはありませんが、特別なフック関数が提供されます。

  • __get__(): 属性アクセス時に呼び出され、この関数は属性値を返します。
  • __set__(): 次の場合にトリガーされます。属性が変更され、記述子が設定プロセスを制御できるようになります。
  • __delete__(): 属性が削除されたときに呼び出され、クリーンアップまたは検証を処理する機会が提供されます。

引数なしのプロパティの作成

Python @property デコレータはサポートしていますデコレータ チェーンを使用すると、@property 自体に引数を指定せずにセッター メソッドとデリーター メソッドを追加できます。この連鎖の構文は次のとおりです。

@property
def name(self):
    return self._name

@name.setter
def name(self, value):
    self._name = value

@name.deleter
def name(self):
    del self._name

@name を使用してセッター メソッドとデリーター メソッドを修飾すると、実際には @ によって作成された記述子オブジェクトのそれぞれのメソッド (__set__ および __delete__) を呼び出していることになります。財産。後続の各デコレータは、基礎となる記述子オブジェクトを変更し、より多用途で制御された属性を作成します。

結論

Python の @property デコレータは、プロパティを作成するための強力なメカニズムを提供します。カスタムのゲッター、セッター、デリーター メソッド。このツールがバックグラウンドでどのように動作するかを理解することで、このツールの可能性を最大限に活用してオブジェクトの機能を強化し、カプセル化とデータの整合性を維持できます。

以上がPython の `@property` デコレーターは、特に引数がない場合、どのように機能しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの2つのリストを連結する代替品は何ですか?Pythonの2つのリストを連結する代替品は何ですか?May 09, 2025 am 12:16 AM

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Python:2つのリストをマージする効率的な方法Python:2つのリストをマージする効率的な方法May 09, 2025 am 12:15 AM

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

コンパイルされた通信言語:長所と短所コンパイルされた通信言語:長所と短所May 09, 2025 am 12:06 AM

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Python:ループのために、そして最も完全なガイドPython:ループのために、そして最も完全なガイドMay 09, 2025 am 12:05 AM

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

Python concatenateリストを文字列に入れますPython concatenateリストを文字列に入れますMay 09, 2025 am 12:02 AM

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

Pythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたPythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたMay 08, 2025 am 12:16 AM

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

Pythonの「for」と「while」ループの違いを学びますPythonの「for」と「while」ループの違いを学びますMay 08, 2025 am 12:11 AM

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

重複したPython Concatenateリスト重複したPython ConcatenateリストMay 08, 2025 am 12:09 AM

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール