Pandas での集計
Pandas を使用すると、さまざまな集計操作を実行して、次元を削減し、データを要約できます。
質問 1: どうすればよいですか? Pandas で集計を実行しますか?
Pandas は多くの機能を提供します集計関数 (mean()、sum()、count()、min()、max() など)。これらの関数を使用して、各グループの概要統計を計算できます。例:
# Calculate mean of each group based on 'A' and 'B' columns df1 = df.groupby(['A', 'B']).mean() # Print the results print(df1)
質問 2: 集約後にデータフレームがありません。何が起こったのでしょうか?
複数の列に集計を適用すると、グループ化された列の数に応じて、結果のオブジェクトは Series または DataFrame になります。
- Series: 1 つ以上の列でグループ化すると、結果は、対応するインデックスを持つシリーズになります。 groups.
- DataFrame: 1 つの列だけでグループ化すると、結果は元の列に対応する列を含む DataFrame になります。
DataFrame を取得するにはすべての列については、groupby 関数で as_index=False を使用します。
質問 3: 主に文字列列を集計するにはどうすればよいですか? (リスト、タプル、区切り文字付き文字列)?
文字列列を集計するには、リスト、タプル、または結合操作を使用できます。
- List: list() を使用して列をリストに変換するか、 GroupBy.apply(list).
- Tuple: tuple() または GroupBy.apply(tuple).
- String を使用して列をタプルに変換します。 separator: を使用して文字列と区切り文字を結合します。 str.join().
例:
# Convert 'B' column values to a list for each group df1 = df.groupby('A')['B'].agg(list).reset_index() # Combine 'B' column values into a string with separator for each group df2 = df.groupby('A')['B'].agg(','.join).reset_index()
質問 4: カウントを集計するにはどうすればよいですか?
それぞれの非欠損値をカウントするにはグループの場合は、GroupBy.count() を使用します。欠損値を含むすべての値をカウントするには、GroupBy.size() を使用します。
例:
# Count non-missing values in 'C' column for each group df1 = df.groupby('A')['C'].count().reset_index(name='COUNT') # Count all values in 'A' column for each group df2 = df.groupby('A').size().reset_index(name='COUNT')
質問 5: 集計値で満たされる新しい列を作成するにはどうすればよいですか?
transform() メソッドを使用して、集計値を含む新しい列を追加できます。 transform() 関数は、指定された操作を各グループに適用し、元のオブジェクトと同じサイズの新しいオブジェクトを返します。
例:
# Create a new 'C1' column with the sum of 'C' grouped by 'A' df['C1'] = df.groupby('A')['C'].transform('sum')
以上がPandas でデータ集約を実行するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonisbothcompiledinterted.whenyourunapythonscript、itisfirstcompiledintobytecode、これはdenepythonvirtualmachine(pvm).thishybridapproaChallowsforplatform-platform-denodent-codebutcututicut。

Pythonは厳密に行ごとの実行ではありませんが、最適化され、インタープレーターメカニズムに基づいて条件付き実行です。インタープリターは、コードをPVMによって実行されるBytecodeに変換し、定数式または最適化ループを事前促進する場合があります。これらのメカニズムを理解することで、コードを最適化し、効率を向上させることができます。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 中国語版
中国語版、とても使いやすい

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
