検索
ホームページバックエンド開発Python チュートリアルClientAI と Ollama を使用してローカル AI タスク プランナーを構築する

Building a Local AI Task Planner with ClientAI and Ollama

このチュートリアルでは、ClientAI と Ollama を使用して AI を活用したタスク プランナーを構築します。当社のプランナーは、目標を実行可能なタスクに分割し、現実的なタイムラインを作成し、リソースを管理します。これらはすべてお客様のマシンで実行されます。

私たちのタスク プランナーは次のことが可能です:

  • 目標を具体的で実行可能なタスクに分割する
  • エラー処理を使用した現実的なタイムラインの作成
  • リソースの効果的な管理と割り当て
  • 構造化されフォーマットされた計画を提供する

ClientAI のドキュメントについてはここを参照し、Github リポジトリについてはここを参照してください。

環境のセットアップ

まず、プロジェクト用に新しいディレクトリを作成します。

mkdir local_task_planner
cd local_task_planner

Ollama サポートを使用して ClientAI をインストールします:

pip install clientai[ollama]

システムに Ollama がインストールされていることを確認してください。 Ollama の Web サイトから入手できます。

メインの Python ファイルを作成します:

touch task_planner.py

コアインポートから始めましょう:

from datetime import datetime, timedelta
from typing import Dict, List
import logging

from clientai import ClientAI
from clientai.agent import create_agent, tool
from clientai.ollama import OllamaManager

logger = logging.getLogger(__name__)

各コンポーネントは重要な役割を果たします:

  • datetime: タスクのタイムラインとスケジュールの管理に役立ちます
  • ClientAI: AI フレームワークを提供します
  • OllamaManager: ローカル AI モデルを管理します
  • タイプヒントとロギング用のさまざまなユーティリティモジュール

タスク プランナー コアの構築

まず、AI インタラクションを管理する TaskPlanner クラスを作成しましょう。

class TaskPlanner:
    """A local task planning system using Ollama."""

    def __init__(self):
        """Initialize the task planner with Ollama."""
        self.manager = OllamaManager()
        self.client = None
        self.planner = None

    def start(self):
        """Start the Ollama server and initialize the client."""
        self.manager.start()
        self.client = ClientAI("ollama", host="http://localhost:11434")

        self.planner = create_agent(
            client=self.client,
            role="task planner",
            system_prompt="""You are a practical task planner. Break down goals into
            specific, actionable tasks with realistic time estimates and resource needs.
            Use the tools provided to validate timelines and format plans properly.""",
            model="llama3",
            step="think",
            tools=[validate_timeline, format_plan],
            tool_confidence=0.8,
            stream=True,
        )

このクラスは私たちの基礎として機能します。 Ollama サーバーのライフサイクルを管理し、AI クライアントを作成および構成し、特定の機能を備えた計画エージェントをセットアップします。

計画ツールの作成

次に、AI が使用するツールを構築しましょう。まず、タイムラインバリデータ:

@tool(name="validate_timeline")
def validate_timeline(tasks: Dict[str, int]) -> Dict[str, dict]:
    """
    Validate time estimates and create a realistic timeline.

    Args:
        tasks: Dictionary of task names and estimated hours

    Returns:
        Dictionary with start dates and deadlines
    """
    try:
        current_date = datetime.now()
        timeline = {}
        accumulated_hours = 0

        for task, hours in tasks.items():
            try:
                hours_int = int(float(str(hours)))

                if hours_int 



<p>このバリデーターは、推定時間を営業日に変換し、無効な入力を適切に処理し、現実的な順次スケジュールを作成し、デバッグ用の詳細なログを提供します。</p>

<p>次に、プラン フォーマッタを作成しましょう:<br>
</p>

<pre class="brush:php;toolbar:false">@tool(name="format_plan")
def format_plan(
    tasks: List[str],
    timeline: Dict[str, dict],
    resources: List[str]
) -> str:
    """
    Format the plan in a clear, structured way.

    Args:
        tasks: List of tasks
        timeline: Timeline from validate_timeline
        resources: List of required resources

    Returns:
        Formatted plan as a string
    """
    try:
        plan = "== Project Plan ==\n\n"

        plan += "Tasks and Timeline:\n"
        for i, task in enumerate(tasks, 1):
            if task in timeline:
                t = timeline[task]
                plan += f"\n{i}. {task}\n"
                plan += f"   Start: {t['start']}\n"
                plan += f"   End: {t['end']}\n"
                plan += f"   Estimated Hours: {t['hours']}\n"

        plan += "\nRequired Resources:\n"
        for resource in resources:
            plan += f"- {resource}\n"

        return plan
    except Exception as e:
        logger.error(f"Error formatting plan: {str(e)}")
        return "Error: Unable to format plan"

ここでは、適切なタスク番号付けと整理されたタイムラインを備えた、一貫性があり読みやすい出力を作成したいと考えています。

インターフェースの構築

プランナー用の使いやすいインターフェースを作成してみましょう:

def get_plan(self, goal: str) -> str:
    """
    Generate a plan for the given goal.

    Args:
        goal: The goal to plan for

    Returns:
        A formatted plan string
    """
    if not self.planner:
        raise RuntimeError("Planner not initialized. Call start() first.")

    return self.planner.run(goal)

def main():
    planner = TaskPlanner()

    try:
        print("Task Planner (Local AI)")
        print("Enter your goal, and I'll create a practical, timeline-based plan.")
        print("Type 'quit' to exit.")

        planner.start()

        while True:
            print("\n" + "=" * 50 + "\n")
            goal = input("Enter your goal: ")

            if goal.lower() == "quit":
                break

            try:
                plan = planner.get_plan(goal)
                print("\nYour Plan:\n")
                for chunk in plan:
                    print(chunk, end="", flush=True)
            except Exception as e:
                print(f"Error: {str(e)}")

    finally:
        planner.stop()

if __name__ == "__main__":
    main()

私たちのインターフェースは以下を提供します:

  • ユーザーの指示を明確に
  • ストリーミングによるリアルタイムの計画生成
  • 適切なエラー処理
  • クリーンなシャットダウン管理

使用例

プランナーを実行すると次のように表示されます:

Task Planner (Local AI)
Enter your goal, and I'll create a practical, timeline-based plan.
Type 'quit' to exit.

==================================================

Enter your goal: Create a personal portfolio website

Your Plan:

== Project Plan ==

Tasks and Timeline:
1. Requirements Analysis and Planning
   Start: 2024-12-08
   End: 2024-12-09
   Estimated Hours: 6

2. Design and Wireframing
   Start: 2024-12-09
   End: 2024-12-11
   Estimated Hours: 12

3. Content Creation
   Start: 2024-12-11
   End: 2024-12-12
   Estimated Hours: 8

4. Development
   Start: 2024-12-12
   End: 2024-12-15
   Estimated Hours: 20

Required Resources:
- Design software (e.g., Figma)
- Text editor or IDE
- Web hosting service
- Version control system

今後の改善点

独自のタスク プランナー用に次の機能強化を検討してください。

  • タスク間の依存関係追跡を追加します
  • リソースのコスト計算を含める
  • 計画をファイルまたはプロジェクト管理ツールに保存
  • 当初の計画に対する進捗状況を追跡します
  • リソースの可用性の検証を追加
  • 並列タスクのスケジューリングを実装する
  • 定期的なタスクのサポートを追加
  • タスクの優先度レベルを含める

ClientAI について詳しくは、ドキュメントをご覧ください。

私とつながってください

このチュートリアルについてご質問がある場合、またはタスク プランナーの改善点を共有したい場合は、お気軽にお問い合わせください:

  • GitHub: igorbenav
  • X/Twitter: @igorbenav
  • LinkedIn: イゴール

以上がClientAI と Ollama を使用してローカル AI タスク プランナーを構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの2つのリストを連結する代替品は何ですか?Pythonの2つのリストを連結する代替品は何ですか?May 09, 2025 am 12:16 AM

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Python:2つのリストをマージする効率的な方法Python:2つのリストをマージする効率的な方法May 09, 2025 am 12:15 AM

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

コンパイルされた通信言語:長所と短所コンパイルされた通信言語:長所と短所May 09, 2025 am 12:06 AM

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Python:ループのために、そして最も完全なガイドPython:ループのために、そして最も完全なガイドMay 09, 2025 am 12:05 AM

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

Python concatenateリストを文字列に入れますPython concatenateリストを文字列に入れますMay 09, 2025 am 12:02 AM

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

Pythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたPythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたMay 08, 2025 am 12:16 AM

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

Pythonの「for」と「while」ループの違いを学びますPythonの「for」と「while」ループの違いを学びますMay 08, 2025 am 12:11 AM

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

重複したPython Concatenateリスト重複したPython ConcatenateリストMay 08, 2025 am 12:09 AM

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境