Pandas コードで apply() を使用しない場合
この包括的な分析では、Pandas コードで apply() 関数を使用することの長所と短所を調査します。 p>
apply() を理解するFunction
apply() は、DataFrame の各行または列にユーザー定義関数を適用できる便利な関数です。ただし、制限と潜在的なパフォーマンスの問題が伴います。
apply() を回避する理由
- パフォーマンスの問題: apply() はユーザー定義関数を反復的に適用するため、パフォーマンスが大幅に低下します。ボトルネック。通常、ベクトル化された代替またはリスト内包表記の方が高速です。
- 冗長な行または列の実行: 場合によっては、apply() はユーザー定義関数を 2 回実行します。副作用を確認し、関数を一度適用する
- 単純な操作の非効率: sum() や max() などの多くの組み込み Pandas 関数は、apply() よりもはるかに高速に操作を実行します。単純なタスクの場合。
時apply() の使用を検討する
一般的に apply() は避けるべきですが、許容可能なオプションとなる特定の状況もあります:
-
データフレームではなくシリーズのベクトル化された関数: 関数がSeries についてはベクトル化されていますが DataFrame についてはベクトル化されていないため、apply() を使用して関数を複数の列に適用できます。
: 複数の変換を 1 つの変換に結合するにはGroupBy オペレーション、apply() は GroupBy で使用できます。 object. - Series から String への変換: 驚くべきことに、以下のデータ サイズの場合、Series 内の整数を文字列に変換する場合、apply() の方が astype() よりも高速になることがあります。 215.
コード リファクタリングのヒント
apply の使用を減らすには() コードのパフォーマンスを向上させるには、次の点を考慮してください。テクニック:
- ベクトル化操作: 可能な限り Pandas または numpy で利用可能なベクトル化関数を使用します。
- Pandas の組み込み関数を利用する: sum() や max() などの一般的な操作に最適化された Pandas 関数を活用します。
- カスタム ラムダを控えめに使用する: apply() でカスタム ラムダを使用する場合は、渡します。二重を避けるために、リスト内包表記またはベクトル化関数の引数としてそれらを使用します。
リスト内包表記を利用する:スカラー操作の場合、リスト内包表記は apply() のより高速な代替手段を提供します。
これらの手法を適用すると、コードの実行が大幅に高速化され、全体的なパフォーマンスが向上します。
結論
apply() は便利な関数ですが、そうすべきです。慎重に使用してください。 apply() の制限とパフォーマンスへの影響を理解することは、効率的でスケーラブルな Pandas コードを作成するために重要です。
以上がどのような場合に Pandas の `apply()` 関数の使用を避けるべきでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック



