Pandas でのブール インデックス作成の論理演算子
Pandas でブール インデックス作成を実行する場合、論理演算子 & (ビット単位の AND) と (論理 AND).
ブール値に & over と を使用する理由インデックスを作成しますか?
次の例を考えてみましょう:
a = pd.DataFrame({'x': [1, 1], 'y': [10, 20]}) a[(a['x'] == 1) & (a['y'] == 10)]
このコードは期待どおりの結果を返します:
x y 0 1 10
ただし、& の代わりに and を使用すると、エラーが発生します:
a[(a['x'] == 1) and (a['y'] == 10)]
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
エラー
このエラーは、各シリーズ (a['x'] および a['y']) の真実性を個別に評価しようとするために発生します。ただし、これらの系列には明確なブール値がないため、曖昧な真理値エラーが発生します。
対照的に、ビット単位の & 演算子は要素単位の論理演算を実行します。これは、各要素が a['x'] と a['y'] の対応する要素間の演算の結果を表すブール配列を返します。これにより、インデックス作成用のブール マスクを作成できます。
括弧: 必須要件
& を使用する場合は括弧を使用することが必須であることに注意してください。これらがないと、& over == の演算子の優先順位が高いため、操作は正しく評価されません。
a['x'] == 1 & a['y'] == 10 # Incorrect: Triggers the error (a['x'] == 1) & (a['y'] == 10) # Correct: Boolean indexing works as expected
結論
Pandas でブール型インデックス付けを実行するときは、常に & 演算子を使用してください。要素ごとの論理演算。これにより、適切な評価が保証され、曖昧な真理値エラーが回避されます。
以上がPandas のブール型インデックス作成: なぜ「and」の代わりに「&」を使用するのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

AlaySaregenerallymorememory-effictient forstring forstring inumericaldataduetotheirfixed-sizenature anddirectmoryaccess.1)AraysstoreElementsinaCourowlock、Reducingoverheadfrompointertersormetadata.2)リスト

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Pythonリストは、さまざまな種類のデータを保存できます。サンプルリストには、整数、文字列、フローティングポイント番号、ブール膜、ネストされたリスト、辞書が含まれています。リストの柔軟性は、データ処理とプロトタイピングにおいて価値がありますが、コードの読みやすさと保守性を確保するためには注意して使用する必要があります。

Pythondoesnothavebuiltinarays; usethearmoduleformemory-efficienthogeneousdatastorage、while-lelistSareversatileformixeddatypes.Arraysareeffientive for forlardatedateSetsetype、wheneasofferistofibuliestibuliestuseduseerieartusedoersorerdatatess。

sostCommonlylysedModule forcreatinginpythonisnumpy.1)numProvidesefficientToolsForArrayoperations、理想的なfornumericaldata.2)arrayscanbecreatedusingnp.array()for1dand2dstructures.3)

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。
