ホームページ >バックエンド開発 >Python チュートリアル >phidata と Ollama を使用して I エージェントを構築する
この記事では、phidata と Ollama ローカル LLM を使用して、Web 検索、財務分析、推論、検索拡張生成用の AI エージェントを作成する方法を検討します。コードはllama3.2モデルを使用しています。別のモデルを使用したい場合は、使用したいモデルをダウンロードし、コード内の model_id 変数を置き換える必要があります。
エージェント システムを構築、出荷、監視するためのオープンソース プラットフォーム。
https://www.phidata.com/
Ollama は、ローカル大規模言語モデル (LLM) の導入と使用を簡素化するように設計されたプラットフォームとツールセットです。
https://ollam.ai/
この記事では、llama3.2 モデルを使用します。
ollama pull llama3.2
Rust で書かれた、非常に高速な Python パッケージおよびプロジェクト マネージャー。
https://github.com/astral-sh/uv
UV を使用したくない場合は、UV の代わりに pip を使用できます。その場合、uv add の代わりに pip install を使用する必要があります。
https://docs.astral.sh/uv/getting-started/installation/
pip を使用する場合は、プロジェクト フォルダーを作成する必要があります。
uv init phidata-ollama
uv add phidata ollama duckduckgo-search yfinance pypdf lancedb tantivy sqlalchemy
この記事では、phidata と Ollama を使用して 5 つの AI エージェントを作成してみます。
注: 開始する前に、ollamserve を実行して、ollam サーバーが実行されていることを確認してください。
作成する最初のエージェントは、DuckDuckGo 検索エンジンを使用する Web 検索エージェントです。
from phi.agent import Agent from phi.model.ollama import Ollama from phi.tools.duckduckgo import DuckDuckGo model_id = "llama3.2" model = Ollama(id=model_id) web_agent = Agent( name="Web Agent", model=model, tools=[DuckDuckGo()], instructions=["Always include sources"], show_tool_calls=True, markdown=True, ) web_agent.print_response("Tell me about OpenAI Sora?", stream=True)
出力:
┏━ Message ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ Tell me about OpenAI Sora? ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ ┏━ Response (12.0s) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ ┃ ┃ • Running: duckduckgo_news(query=OpenAI Sora) ┃ ┃ ┃ ┃ OpenAI's Sora is a video-generating model that has been trained on ┃ ┃ copyrighted content, which has raised concerns about its legality. ┃ ┃ According to TechCrunch, it appears that OpenAI trained Sora on game ┃ ┃ content, which could be a problem. Additionally, MSN reported that the ┃ ┃ model doesn't feel like the game-changer it was supposed to be. ┃ ┃ ┃ ┃ In other news, Yahoo reported that when asked to generate gymnastics ┃ ┃ videos, Sora produces horrorshow videos with whirling and morphing ┃ ┃ limbs. A lawyer told ExtremeTech that it's "overwhelmingly likely" that ┃ ┃ copyrighted materials are included in Sora's training dataset. ┃ ┃ ┃ ┃ Geeky Gadgets reviewed OpenAI's Sora, stating that while it is included ┃ ┃ in the 0/month Pro Plan, its standalone value for video generation ┃ ┃ is less clear compared to other options. ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
作成する 2 番目のエージェントは、yfinance ツールを使用する金融エージェントです。
from phi.agent import Agent from phi.model.ollama import Ollama from phi.tools.yfinance import YFinanceTools model_id = "llama3.2" model = Ollama(id=model_id) finance_agent = Agent( name="Finance Agent", model=model, tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True, company_news=True)], instructions=["Use tables to display data"], show_tool_calls=True, markdown=True, ) finance_agent.print_response("Summarize analyst recommendations for NVDA", stream=True)
出力:
┏━ Message ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ Summarize analyst recommendations for NVDA ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ ┏━ Response (3.9s) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ ┃ ┃ • Running: get_analyst_recommendations(symbol=NVDA) ┃ ┃ ┃ ┃ Based on the analyst recommendations, here is a summary: ┃ ┃ ┃ ┃ • The overall sentiment is bullish, with 12 strong buy and buy ┃ ┃ recommendations. ┃ ┃ • There are no strong sell or sell recommendations. ┃ ┃ • The average price target for NVDA is around 0-0. ┃ ┃ • Analysts expect NVDA to continue its growth trajectory, driven by ┃ ┃ its strong products and services in the tech industry. ┃ ┃ ┃ ┃ Please note that these recommendations are subject to change and may ┃ ┃ not reflect the current market situation. It's always a good idea to do ┃ ┃ your own research and consult with a financial advisor before making ┃ ┃ any investment decisions. ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
私たちが作成する 3 番目のエージェントは、DuckDuckGo 検索エンジンと YFinance ツールを使用するエージェント チームです。
from phi.agent import Agent from phi.model.ollama import Ollama from phi.tools.duckduckgo import DuckDuckGo from phi.tools.yfinance import YFinanceTools web_instructions = 'Always include sources' finance_instructions = 'Use tables to display data' model_id = "llama3.2" model = Ollama(id=model_id) web_agent = Agent( name="Web Agent", role="Search the web for information", model=model, tools=[DuckDuckGo()], instructions=[web_instructions], show_tool_calls=True, markdown=True, ) finance_agent = Agent( name="Finance Agent", role="Get financial data", model=model, tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True)], instructions=[finance_instructions], show_tool_calls=True, markdown=True, ) agent_team = Agent( model=model, team=[web_agent, finance_agent], instructions=[web_instructions, finance_instructions], show_tool_calls=True, markdown=True, ) agent_team.print_response("Summarize analyst recommendations and share the latest news for NVDA", stream=True)
作成する 4 番目のエージェントは、タスクを使用する推論エージェントです。
from phi.agent import Agent from phi.model.ollama import Ollama model_id = "llama3.2" model = Ollama(id=model_id) task = ( "Three missionaries and three cannibals want to cross a river." "There is a boat that can carry up to two people, but if the number of cannibals exceeds the number of missionaries, the missionaries will be eaten." ) reasoning_agent = Agent(model=model, reasoning=True, markdown=True, structured_outputs=True) reasoning_agent.print_response(task, stream=True, show_full_reasoning=True)
出力:
┏━ Message ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ Three missionaries and three cannibals want to cross a river.There is a ┃ ┃ boat that can carry up to two people, but if the number of cannibals ┃ ┃ exceeds the number of missionaries, the missionaries will be eaten. ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ [Reasoning steps and output as in the original document]
作成する 5 番目のエージェントは、PDF ナレッジ ベースと LanceDB ベクター データベースを使用する RAG エージェントです。
from phi.agent import Agent from phi.model.openai import OpenAIChat from phi.embedder.openai import OpenAIEmbedder from phi.embedder.ollama import OllamaEmbedder from phi.model.ollama import Ollama from phi.knowledge.pdf import PDFUrlKnowledgeBase from phi.vectordb.lancedb import LanceDb, SearchType model_id = "llama3.2" model = Ollama(id=model_id) embeddings = OllamaEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.") knowledge_base = PDFUrlKnowledgeBase( urls=["https://phi-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=LanceDb( table_name="recipes", uri="tmp/lancedb", search_type=SearchType.vector, embedder=OllamaEmbedder(), ), ) knowledge_base.load() agent = Agent( model=model, knowledge=knowledge_base, show_tool_calls=True, markdown=True, ) agent.print_response("Please tell me how to make green curry.", stream=True)
出力:
uv run rag_agent.py WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first INFO Creating collection INFO Loading knowledge base INFO Reading: https://phi-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first WARNING model "openhermes" not found, try pulling it first INFO Added 14 documents to knowledge base WARNING model "openhermes" not found, try pulling it first ERROR Error searching for documents: list index out of range ┏━ Message ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ Please tell me how to make green curry. ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ ┏━ Response (5.4s) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ ┃ ┃ • Running: search_knowledge_base(query=green curry recipe) ┃ ┃ ┃ ┃ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ ┃ ┃ Green Curry Recipe ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ ┃ ┃ ┃ ┃ ** Servings: 4-6 people** ┃ ┃ ┃ ┃ Ingredients: ┃ ┃ ┃ ┃ • 2 tablespoons vegetable oil ┃ ┃ • 2 cloves garlic, minced ┃ ┃ • 1 tablespoon grated fresh ginger ┃ ┃ • 2 tablespoons Thai red curry paste ┃ ┃ • 2 cups coconut milk ┃ ┃ • 1 cup mixed vegetables (such as bell peppers, bamboo shoots, and ┃ ┃ Thai eggplant) ┃ ┃ • 1 pound boneless, skinless chicken breasts or thighs, cut into ┃ ┃ bite-sized pieces ┃ ┃ • 2 tablespoons fish sauce ┃ ┃ • 1 tablespoon palm sugar ┃ ┃ • 1/4 teaspoon ground white pepper ┃ ┃ • Salt to taste ┃ ┃ • Fresh basil leaves for garnish ┃ ┃ ┃ ┃ Instructions: ┃ ┃ ┃ ┃ 1 Prepare the curry paste: In a blender or food processor, combine the ┃ ┃ curry paste, garlic, ginger, fish sauce, palm sugar, and white ┃ ┃ pepper. Blend until smooth. ┃ ┃ 2 Heat oil in a pan: Heat the oil in a large skillet or Dutch oven ┃ ┃ over medium-high heat. ┃ ┃ 3 Add the curry paste: Pour the blended curry paste into the hot oil ┃ ┃ and stir constantly for 1-2 minutes, until fragrant. ┃ ┃ 4 Add coconut milk: Pour in the coconut milk and bring the mixture to ┃ ┃ a simmer. ┃ ┃ 5 Add vegetables and chicken: Add the mixed vegetables and chicken ┃ ┃ pieces to the pan. Stir gently to combine. ┃ ┃ 6 Reduce heat and cook: Reduce the heat to medium-low and let the ┃ ┃ curry simmer, uncovered, for 20-25 minutes or until the chicken is ┃ ┃ cooked through and the sauce has thickened. ┃ ┃ 7 Season with salt and taste: Season the curry with salt to taste. ┃ ┃ Serve hot garnished with fresh basil leaves. ┃ ┃ ┃ ┃ Tips and Variations: ┃ ┃ ┃ ┃ • Adjust the level of spiciness by using more or less Thai red curry ┃ ┃ paste. ┃ ┃ • Add other protein sources like shrimp, tofu, or tempeh for a ┃ ┃ vegetarian or vegan option. ┃ ┃ • Experiment with different vegetables, such as zucchini or carrots, ┃ ┃ to add variety. ┃ ┃ ┃ ┃ Tools Used: Python ┃ ┃ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
この記事では、phidata と Ollama ローカル LLM を使用して、Web 検索、財務分析、推論、検索拡張生成のための AI エージェントを作成する方法を検討しました。
以上がphidata と Ollama を使用して I エージェントを構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。