コーヒー買ってきて☕
*私の投稿ではオックスフォード 102 フラワーについて説明しています。
Fflowers102() は、以下に示すように Oxford 102 Flower データセットを使用できます。
*メモ:
- 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
- 2番目の引数はsplit(Optional-Default:"train"-Type:str)です。 ※「train」(1,020枚)、「val」(1,020枚)、「test」(6,149枚)が設定可能です。
- 3 番目の引数は、transform(Optional-Default:None-Type:callable) です。
- 4 番目の引数は target_transform(Optional-Default:None-Type:callable) です。
- 5 番目の引数は download(Optional-Default:False-Type:bool) です。
*メモ:
- True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
- これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
- これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
- データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
- ここから data/flowers-102/ にデータセット (imagelabels.mat と setid.matff を含む 102flowers.tgz) を手動でダウンロードして抽出できます。
- 電車と検証画像のインデックスのカテゴリ(クラス)のラベルについて、0は0~9、1は10~19、2は20~29、3は30~39、4は40~49、 5は50~59、6は60~69、7は70~79、8は80~89、9は90~99など
- テスト画像のインデックスのカテゴリ(クラス)のラベルについて、0は0~19、1は20~59、2は60~79、3は80~115、4は116~160、5は161~185、6は186~205、7は206~270、8は271~296、9は297~321など。
from torchvision.datasets import Flowers102 train_data = Flowers102( root="data" ) train_data = Flowers102( root="data", split="train", transform=None, target_transform=None, download=False ) val_data = Flowers102( root="data", split="val" ) test_data = Flowers102( root="data", split="test" ) len(train_data), len(val_data), len(test_data) # (1020, 1020, 6149) train_data # Dataset Flowers102 # Number of datapoints: 1020 # Root location: data # split=train train_data.root # 'data' train_data._split # 'train' print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method flowers102.download of dataset flowers102 number datapoints: root location: data split="train"> len(set(train_data._labels)), train_data._labels # (102, # [0, 0, 0, ..., 1, ..., 2, ..., 3, ..., 4, ..., 5, ..., 6, ..., 101]) train_data[0] # (<pil.image.image image mode="RGB" size="754x500">, 0) train_data[1] # (<pil.image.image image mode="RGB" size="624x500">, 0) train_data[2] # (<pil.image.image image mode="RGB" size="667x500">, 0) train_data[10] # (<pil.image.image image mode="RGB" size="500x682">, 1) train_data[20] # (<pil.image.image image mode="RGB" size="667x500">, 2) val_data[0] # (<pil.image.image image mode="RGB" size="606x500">, 0) val_data[1] # (<pil.image.image image mode="RGB" size="667x500">, 0) val_data[2] # (<pil.image.image image mode="RGB" size="500x628">, 0) val_data[10] # (<pil.image.image image mode="RGB" size="500x766">, 1) val_data[20] # (<pil.image.image image mode="RGB" size="624x500">, 2) test_data[0] # (<pil.image.image image mode="RGB" size="523x500">, 0) test_data[1] # (<pil.image.image image mode="RGB" size="666x500">, 0) test_data[2] # (<pil.image.image image mode="RGB" size="595x500">, 0) test_data[20] # (<pil.image.image image mode="RGB" size="500x578">, 1) test_data[60] # (<pil.image.image image mode="RGB" size="500x625">, 2) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, lab = data[j] plt.imshow(X=im) plt.title(label=lab) plt.tight_layout() plt.show() train_ims = (0, 1, 2, 10, 20, 30, 40, 50, 60, 70) val_ims = (0, 1, 2, 10, 20, 30, 40, 50, 60, 70) test_ims = (0, 1, 2, 20, 60, 80, 116, 161, 186, 206) show_images(data=train_data, ims=train_ims, main_title="train_data") show_images(data=train_data, ims=val_ims, main_title="val_data") show_images(data=test_data, ims=test_ims, main_title="test_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
以上がPyTorch の花の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonisbothcompiledinterted.whenyourunapythonscript、itisfirstcompiledintobytecode、これはdenepythonvirtualmachine(pvm).thishybridapproaChallowsforplatform-platform-denodent-codebutcututicut。

Pythonは厳密に行ごとの実行ではありませんが、最適化され、インタープレーターメカニズムに基づいて条件付き実行です。インタープリターは、コードをPVMによって実行されるBytecodeに変換し、定数式または最適化ループを事前促進する場合があります。これらのメカニズムを理解することで、コードを最適化し、効率を向上させることができます。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

Dreamweaver Mac版
ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
