コーヒー買ってきて☕
*私の投稿では CIFAR-10 について説明しています。
CIFAR10() は、以下に示すように CIFAR-10 データセットを使用できます。
*メモ:
- 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
- 2 番目の引数は train(Optional-Default:True-Type:bool) です。 ※Trueの場合はトレーニングデータ(50,000枚)、Falseの場合はテストデータ(10,000枚)を使用します。
- 3 番目の引数は、transform(Optional-Default:None-Type:callable) です。
- 4 番目の引数は target_transform(Optional-Default:None-Type:callable) です。
- 5 番目の引数は download(Optional-Default:False-Type:bool) です。
*メモ:
- True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
- これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
- これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
- データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
- データセット (cifar-10-python.tar.gz) をここから data/cifar-10-batches-py/ に手動でダウンロードして抽出できます。
from torchvision.datasets import CIFAR10 train_data = CIFAR10( root="data" ) train_data = CIFAR10( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = CIFAR10( root="data", train=False ) len(train_data), len(test_data) # (50000, 10000) train_data # Dataset CIFAR10 # Number of datapoints: 50000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # bound method CIFAR10.download of Dataset CIFAR10 # Number of datapoints: 50000 # Root location: data # Split: Train> len(train_data.classes) # 10 train_data.classes # ['airplane', 'automobile', 'bird', 'cat', 'deer', # 'dog', 'frog', 'horse', 'ship', 'truck'] train_data[0] # (<pil.image.image image mode="RGB" size="32x32">, 6) train_data[1] # (<pil.image.image image mode="RGB" size="32x32">, 9) train_data[2] # (<pil.image.image image mode="RGB" size="32x32">, 9) train_data[3] # (<pil.image.image image mode="RGB" size="32x32">, 4) train_data[4] # (<pil.image.image image mode="RGB" size="32x32">, 1) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.title(label=lab) plt.imshow(X=im) if i == 10: break plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image>
以上がCIFARin PyTorchの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

inpython、youappendelementStoalistusingtheappend()method.1)useappend()forsingleelements:my_list.append(4).2)useextend()or = formultipleElements:my_list.extend(another_list)ormy_list = [4,5,6] .3)forspecificpositions:my_list.insert(1,5).beaware

シェバンの問題をデバッグする方法には次のものがあります。1。シバン行をチェックして、それがスクリプトの最初の行であり、接頭辞スペースがないことを確認します。 2.通訳パスが正しいかどうかを確認します。 3.通訳を直接呼び出してスクリプトを実行して、シェバンの問題を分離します。 4. StraceまたはTrustsを使用して、システムコールを追跡します。 5.シバンに対する環境変数の影響を確認してください。

pythonlistscanbemanipulatedsingseveralmethodstoremoveElements:1)theremove()methodremovesthefirstoccurrenceofaspecifiedValue.2)thepop()methop()methodremovessanelementatagivenindex.3)thedelstatementementementementementementementementementemoritemoricedex.4)

Integers、strings、floats、booleans、otherlists、anddictionaryを含むpythonlistscanstoreanydatype

PythonListsSupportNumersoperations:1)AddingElementSwithAppend()、Extend()、Andinert()

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

メモ帳++7.3.1
使いやすく無料のコードエディター

ホットトピック









