OpenCV の cv2.inRange を使用した色検出のための HSV 境界の決定
OpenCV で色の検出に cv2.inRange 関数を使用する場合、正確に識別するには、適切な HSV (色相、彩度、値) の上限と下限を選択することが重要です。ターゲットの色。
問題の特定:
次に示すように、オレンジ色の蓋が付いたコーヒー缶を含む画像の例を考えてみましょう。
[オレンジ色の蓋が付いたコーヒー缶の画像]
目的は、HSV 境界を決定してオレンジ色の蓋を分離することです。最初は、(18, 40, 90) ~ (27, 255, 255) の範囲が試行されましたが、予期しない結果が生じました。
解決策 1: スケール変換
アプリケーションごとに HSV 値のスケールが異なる場合があることに注意することが重要です。 OpenCV は H: 0 ~ 179、S: 0 ~ 255、V: 0 ~ 255 のスケールを使用しますが、他の一部のアプリケーションでは H: 0 ~ 360、S: 0 ~ 100、V: 0 ~ 100 のスケールを使用する場合があります。したがって、それに応じて HSV 値を変換する必要があります。
解決策 2: カラー スペース変換
OpenCV は、次の BGR (青、緑、赤) カラー形式を使用します。デフォルトですが、画像は RGB (赤、緑、青) 形式である場合があります。画像を HSV に正しく変換するには、cv2.COLOR_RGB2HSV の代わりに cv2.COLOR_BGR2HSV を使用することが不可欠です。
改訂されたコード:
import cv2 import numpy as np image = cv2.imread('kaffee.png') # Revised HSV boundaries considering scale conversion ORANGE_MIN = np.array([5, 50, 50], np.uint8) ORANGE_MAX = np.array([15, 255, 255], np.uint8) # Convert image to HSV color space hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Apply color filtering mask = cv2.inRange(hsv, ORANGE_MIN, ORANGE_MAX) # Save the masked image cv2.imwrite('kaffee_out.png', mask)
この改訂されたアプローチは、コーヒー缶のオレンジ色の蓋を分離する際に、より正確な結果が得られます。
以上がcv2.inRange を使用して OpenCV で色検出のための HSV 境界を正確に決定する方法は?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ホットトピック



