検索
ホームページバックエンド開発Python チュートリアルTensorFlow でトレーニング済みモデルを効果的に保存および復元するにはどうすればよいですか?

How to Effectively Save and Restore Trained Models in TensorFlow?

Tensorflow でのトレーニング済みモデルの保存と復元

Tensorflow でモデルをトレーニングした後、それを保存して再利用することが重要です。モデル ストレージを効果的に処理する方法は次のとおりです:

トレーニング済みモデルの保存 (Tensorflow バージョン 0.11 以降):

  1. 入力の準備:プレースホルダーを定義し、入力を含むフィード辞書を準備しますdata.
  2. 演算の定義: 加算や乗算など、復元する演算を指定します。
  3. セーバー オブジェクトの作成: セーバー オブジェクトをインスタンス化します。変数ストレージを管理します。
  4. グラフ: saver.save() メソッドを使用して、変数やグラフ構造を含むモデルを保存します。

コード例:

import tensorflow as tf

# Prepare input placeholders
w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")

# Define test operation
w3 = tf.add(w1, w2)
w4 = tf.multiply(w3, tf.Variable(2.0, name="bias"), name="op_to_restore")

# Initialize variables and run session
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# Create saver object
saver = tf.train.Saver()

# Save the model
saver.save(sess, 'my_test_model', global_step=1000)

保存したものを復元するモデル:

  1. メタ グラフのロード: メタ グラフをインポートして、保存されたモデル構造にアクセスします。
  2. 変数の復元: saver.restore() メソッドを使用して保存されたデータを取得します変数。
  3. プレースホルダーの取得とデータのフィード: 入力プレースホルダーを取得し、新しいデータをフィードします。
  4. 保存された操作へのアクセス: 保存した操作を見つけます。実行して実行したい

コード例:

# Restore model
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))

# Get placeholders and feed data
w1 = sess.graph.get_tensor_by_name("w1:0")
w2 = sess.graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}

# Run saved operation
op_to_restore = sess.graph.get_tensor_by_name("op_to_restore:0")
result = sess.run(op_to_restore, feed_dict)

以上がTensorFlow でトレーニング済みモデルを効果的に保存および復元するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの実行モデル:コンパイル、解釈、またはその両方?Pythonの実行モデル:コンパイル、解釈、またはその両方?May 10, 2025 am 12:04 AM

pythonisbothcompiledinterted.whenyourunapythonscript、itisfirstcompiledintobytecode、これはdenepythonvirtualmachine(pvm).thishybridapproaChallowsforplatform-platform-denodent-codebutcututicut。

Pythonはラインごとに実行されますか?Pythonはラインごとに実行されますか?May 10, 2025 am 12:03 AM

Pythonは厳密に行ごとの実行ではありませんが、最適化され、インタープレーターメカニズムに基づいて条件付き実行です。インタープリターは、コードをPVMによって実行されるBytecodeに変換し、定数式または最適化ループを事前促進する場合があります。これらのメカニズムを理解することで、コードを最適化し、効率を向上させることができます。

Pythonの2つのリストを連結する代替品は何ですか?Pythonの2つのリストを連結する代替品は何ですか?May 09, 2025 am 12:16 AM

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Python:2つのリストをマージする効率的な方法Python:2つのリストをマージする効率的な方法May 09, 2025 am 12:15 AM

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

コンパイルされた通信言語:長所と短所コンパイルされた通信言語:長所と短所May 09, 2025 am 12:06 AM

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Python:ループのために、そして最も完全なガイドPython:ループのために、そして最も完全なガイドMay 09, 2025 am 12:05 AM

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

Python concatenateリストを文字列に入れますPython concatenateリストを文字列に入れますMay 09, 2025 am 12:02 AM

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

Pythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたPythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたMay 08, 2025 am 12:16 AM

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター