検索
ホームページウェブフロントエンドjsチュートリアルダイクストラアルゴリズムを理解する: 理論から実装まで

Understanding Dijkstra

ダイクストラのアルゴリズムは、グラフ理論でソース ノードからグラフ内の他のすべてのノードへの最短パスを見つけるために使用される古典的な経路探索アルゴリズムです。この記事では、アルゴリズムとその正しさの証明を検討し、JavaScript での実装を提供します。

ダイクストラのアルゴリズムとは何ですか?

ダイクストラのアルゴリズムは、非負のエッジ重みを持つ重み付きグラフ内の単一のソース ノードからの最短パスを見つけるように設計された貪欲なアルゴリズムです。これは 1956 年に Edsger W. Dijkstra によって提案され、現在でもコンピューター サイエンスで最も広く使用されているアルゴリズムの 1 つです。

入出力

  • 入力: グラフ G=(VE)G = (V, E) G=(V,E) 、 どこ VV V は頂点の集合であり、 EE E はエッジのセットとソースノードです sVs in V s∈V .
  • 出力: からの最短パス距離 ss s の他のすべてのノードに VV V .

中心となる概念

  1. 緩和: ノードまでの既知の最短距離を更新するプロセス。
  2. Priority Queue: 暫定距離が最小のノードを効率的にフェッチします。
  3. 貪欲なアプローチ: 距離が短い順にノードを処理します。

アルゴリズム

  1. 距離の初期化:

    dist(s )=0,dist(v)= vs テキスト{dist}(s) = 0、テキスト{dist}(v) = infty ;クワッドフォーオールvneq s dist(s)=0,dist(v)=∞∀v=s
  2. 優先キューを使用して、距離に基づいてノードを保存します。

  3. 距離が最小のノードを繰り返し抽出し、その近傍を緩和します。

リラクゼーション - 数学的説明

  • 初期化: dist(s)=0,dist(v )= すべて vstext{dist}(s) = 0、text{dist}(v) = infty、text{for all}、v neq s dist(s)=0,dist(v)=のためにllv=s

どこ (s)( s ) (s) はソースノードであり、 (v)( v ) (v) 他のノードを表します。

  • リラックスステップ: 各エッジごと (u,v) (う、う) (u,v) 重さで w(u,v )w(u, v) w(u,v) : もし dist(v)>dist(u) w(u,v)text{距離}(v) > text{dist}(u) w(u, v) dist(v)>dist (う) w(u,v) 、 アップデート:
    dist(v) =dist(u) w(u,v),prev(v)=utext{dist}(v ) = text{dist}(u) w(u, v)、quad text{prev}(v) = u dist(v)=dist(u) w(u,v),(v)=u

機能する理由: 緩和により、より短いパスが見つかった場合に距離を段階的に更新することで、ノードへの最短パスが常に見つかるようになります。


優先キュー - 数学的説明

  • キュー操作:

    • 優先キューは常にノードをデキューします (u)( u ) (u) 最小の暫定距離:
      u=a rg vQdist(v)u = arg min_{v in Q} text{dist}(v) u=arg v∈Q 距離(v)
    • なぜ機能するのか: 最小のノードを処理することによって (dist(v) )( text{dist}(v) ) (dist(v)) 、ソースからへの最短パスを保証します。 (u)( u ) (u) .

正しさの証明

強帰納法を使用してダイクストラのアルゴリズムの正しさを証明します。

強力な誘導とは何ですか?

強い帰納法は数学的帰納法の変形であり、ステートメントを証明するために、 (P(n) )( P(n) ) (P(n)) 、私たちは次の真実を仮定します (P( 1),P(2)P(k))( P(1), P(2), ドット, P(k) ) (P(1),P(2),…,P(k)) 証明する (P(k 1))( P(k 1) ) ( P(k 1)) 。これは、次のことだけを前提とする通常の誘導とは異なります。 (P(k) )( P(k) ) (P(k)) 証明する (P(k 1))( P(k 1) ) ( P(k 1)) 。私の他の投稿で詳しく調べてください。

ダイクストラのアルゴリズムの正しさ (帰納的証明)

  1. 基本ケース:

    ソースノード (s)( s ) (s) で初期化されます dist(s)=0テキスト{距離}(s) = 0 距離(s)=0 正解です。

  2. 帰納仮説:

    これまでに処理されたすべてのノードには正しい最短パス距離があると仮定します。

  3. 帰納的ステップ:

    次のノード (u)( u ) (u) 優先キューからデキューされます。以来 dist(u)text{dist} (う) 距離(u) は残りの最小距離であり、以前のノードはすべて正しい距離を持っています。 dist(u)text{dist} (う) 距離(u)

  4. も正しいです。

JavaScriptの実装

前提条件 (優先キュー):

// Simplified Queue using Sorting
// Use Binary Heap (good)
// or  Binomial Heap (better) or Pairing Heap (best) 
class PriorityQueue {
  constructor() {
    this.queue = [];
  }

  enqueue(node, priority) {
    this.queue.push({ node, priority });
    this.queue.sort((a, b) => a.priority - b.priority);
  }

  dequeue() {
    return this.queue.shift();
  }

  isEmpty() {
    return this.queue.length === 0;
  }
}

これは、優先キューを使用したダイクストラのアルゴリズムの JavaScript 実装です。

function dijkstra(graph, start) {
  const distances = {}; // hold the shortest distance from the start node to all other nodes
  const previous = {}; // Stores the previous node for each node in the shortest path (used to reconstruct the path later).
  const pq = new PriorityQueue(); // Used to efficiently retrieve the node with the smallest tentative distance.

  // Initialize distances and previous
  for (let node in graph) {
    distances[node] = Infinity; // Start with infinite distances
    previous[node] = null; // No previous nodes at the start
  }
  distances[start] = 0; // Distance to the start node is 0

  pq.enqueue(start, 0);

  while (!pq.isEmpty()) {
    const { node } = pq.dequeue(); // Get the node with the smallest tentative distance

    for (let neighbor in graph[node]) {
      const distance = graph[node][neighbor]; // The edge weight
      const newDist = distances[node] + distance;

      // Relaxation Step
      if (newDist 


パスを再構築

// Simplified Queue using Sorting
// Use Binary Heap (good)
// or  Binomial Heap (better) or Pairing Heap (best) 
class PriorityQueue {
  constructor() {
    this.queue = [];
  }

  enqueue(node, priority) {
    this.queue.push({ node, priority });
    this.queue.sort((a, b) => a.priority - b.priority);
  }

  dequeue() {
    return this.queue.shift();
  }

  isEmpty() {
    return this.queue.length === 0;
  }
}

チュートリアルの例

グラフ表現

  • ノード: ABCDA、 B、C、D A、B、C、D
  • エッジ:
    • AB=( 1)AC=(4)A ~B = (1)、A ~ C = (4) A→B=(1),A→C=(4)
    • BC=( 2)BD=(5)B C ~ C = (2)、B ~ D = (5) B→C=(2),B→D=(5)
    • CD=(1)C to D = (1) C→D=(1)

ステップバイステップの実行

  1. 距離の初期化:

    dist(A)= 0 , dist(B)= dist(C)= dist(D)= テキスト{距離}(A) = 0, ; text{dist}(B) = infty, ; text{dist}(C) = infty, ;テキスト{距離}(D) = 無限 dist(A)=0,dist(B)= ∞、距離(C)=∞、距離(D)=
  2. プロセス A:

    • エッジをリラックス: ABAC.A A→B,A→C.
      距離(B)=1, dist(C)=4テキスト{距離}(B) = 1, ;テキスト{距離}(C) = 4 dist(B)=1,dist(C)=4
  3. プロセス B:

    • エッジをリラックス: BCBD.B B→C,B→D.
      距離(C)=3, dist(D)=6テキスト{距離}(C) = 3, ;テキスト{距離}(D) = 6 dist(C)=3,dist(D)=6
  4. プロセス C:

    • リラックスエッジ: CD.C から D。 C→D.
      dist(D)=4テキスト{距離}(D) = 4 dist(D)=4
    • プロセス D:

      • 今後の更新はありません。
    • 最終的な距離とパス

      dist(A)= 0 , dist(B)=1 dist(C)= 3 dist(D)=4 テキスト{距離}(A) = 0, ;テキスト{距離}(B) = 1, ;テキスト{距離}(C) = 3, ;テキスト{距離}(D) = 4 dist(A)=0,dist(B)= 1、距離(C)=3、距離(D)=4

      AB CD AからB、C、Dへ A→B→C→D

      最適化と時間計算量

      ダイクストラのアルゴリズムの時間計算量をさまざまな優先キュー実装と比較:

      Priority Queue Type Insert (M) Extract Min Decrease Key Overall Time Complexity
      Simple Array O(1) O(V) O(V) O(V^2)
      Binary Heap O(log V) O(log V) O(log V) O((V E) log V)
      Binomial Heap O(log V) O(log V) O(log V) O((V E) log V)
      Fibonacci Heap O(1) O(log V) O(1) O(V log V E)
      Pairing Heap O(1) O(log V) O(log V) O(V log V E) (practical)

      重要なポイント:

      1. 単純な配列:
        • extract-min の線形検索のため、大きなグラフでは非効率的です。
      2. バイナリ ヒープ:
        • シンプルさと効率のバランスが取れているため、標準であり、一般的に使用されています。
      3. 二項ヒープ:
        • 理論上の保証はわずかに優れていますが、実装はより複雑です。
      4. フィボナッチ ヒープ:
        • ( O(1) ) 償却減少キーを使用すると最高の理論的パフォーマンスが得られますが、実装は困難です。
      5. ヒープのペアリング:
        • シンプルで、実際にはフィボナッチ ヒープに近いパフォーマンスを発揮します。

      結論

      ダイクストラのアルゴリズムは、非負の重みを持つグラフ内の最短経路を見つけるための強力かつ効率的な方法です。制限はありますが (負のエッジの重みを処理できないなど)、ネットワーキング、ルーティング、その他のアプリケーションで広く使用されています。

      • リラクゼーションは、パスを繰り返し更新することで最短距離を保証します。
      • Priority Queue は、常に最も近いノードを処理し、正確さを維持することを保証します。
      • 正確さは帰納法によって証明されます。ノードの距離が確定すると、それが最短パスであることが保証されます。

      ここでは、厳密な証明と例とともにダイクストラのアルゴリズムを探索できる詳細なリソースをいくつか紹介します。

      • ダイクストラのアルゴリズム PDF
      • SlideShare の最短パス アルゴリズム

      さらに、ウィキペディアではこのトピックの優れた概要が提供されています。

      引用:
      [1] https://www.fuhuthu.com/CPSC420F2019/dijkstra.pdf

      ご意見や改善点をコメントでお気軽に共有してください!

以上がダイクストラアルゴリズムを理解する: 理論から実装までの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
JavaScriptのデータ型:ブラウザとNodejsに違いはありますか?JavaScriptのデータ型:ブラウザとNodejsに違いはありますか?May 14, 2025 am 12:15 AM

JavaScriptコアデータ型は、ブラウザとnode.jsで一貫していますが、余分なタイプとは異なる方法で処理されます。 1)グローバルオブジェクトはブラウザのウィンドウであり、node.jsのグローバルです2)バイナリデータの処理に使用されるNode.jsの一意のバッファオブジェクト。 3)パフォーマンスと時間の処理にも違いがあり、環境に従ってコードを調整する必要があります。

JavaScriptコメント://および / * *を使用するためのガイドJavaScriptコメント://および / * *を使用するためのガイドMay 13, 2025 pm 03:49 PM

javascriptusestwotypesofcomments:シングルライン(//)およびマルチライン(//)

Python vs. JavaScript:開発者の比較分析Python vs. JavaScript:開発者の比較分析May 09, 2025 am 12:22 AM

PythonとJavaScriptの主な違いは、タイプシステムとアプリケーションシナリオです。 1。Pythonは、科学的コンピューティングとデータ分析に適した動的タイプを使用します。 2。JavaScriptは弱いタイプを採用し、フロントエンドとフルスタックの開発で広く使用されています。この2つは、非同期プログラミングとパフォーマンスの最適化に独自の利点があり、選択する際にプロジェクトの要件に従って決定する必要があります。

Python vs. JavaScript:ジョブに適したツールを選択するPython vs. JavaScript:ジョブに適したツールを選択するMay 08, 2025 am 12:10 AM

PythonまたはJavaScriptを選択するかどうかは、プロジェクトの種類によって異なります。1)データサイエンスおよび自動化タスクのPythonを選択します。 2)フロントエンドとフルスタック開発のためにJavaScriptを選択します。 Pythonは、データ処理と自動化における強力なライブラリに好まれていますが、JavaScriptはWebインタラクションとフルスタック開発の利点に不可欠です。

PythonとJavaScript:それぞれの強みを理解するPythonとJavaScript:それぞれの強みを理解するMay 06, 2025 am 12:15 AM

PythonとJavaScriptにはそれぞれ独自の利点があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1. Pythonは、データサイエンスやバックエンド開発に適した簡潔な構文を備えた学習が簡単ですが、実行速度が遅くなっています。 2。JavaScriptはフロントエンド開発のいたるところにあり、強力な非同期プログラミング機能を備えています。 node.jsはフルスタックの開発に適していますが、構文は複雑でエラーが発生しやすい場合があります。

JavaScriptのコア:CまたはCの上に構築されていますか?JavaScriptのコア:CまたはCの上に構築されていますか?May 05, 2025 am 12:07 AM

javascriptisnotbuiltoncorc;それは、解釈されていることを解釈しました。

JavaScriptアプリケーション:フロントエンドからバックエンドまでJavaScriptアプリケーション:フロントエンドからバックエンドまでMay 04, 2025 am 12:12 AM

JavaScriptは、フロントエンドおよびバックエンド開発に使用できます。フロントエンドは、DOM操作を介してユーザーエクスペリエンスを強化し、バックエンドはnode.jsを介してサーバータスクを処理することを処理します。 1.フロントエンドの例:Webページテキストのコンテンツを変更します。 2。バックエンドの例:node.jsサーバーを作成します。

Python vs. Javascript:どの言語を学ぶべきですか?Python vs. Javascript:どの言語を学ぶべきですか?May 03, 2025 am 12:10 AM

PythonまたはJavaScriptの選択は、キャリア開発、学習曲線、エコシステムに基づいている必要があります。1)キャリア開発:Pythonはデータサイエンスとバックエンド開発に適していますが、JavaScriptはフロントエンドおよびフルスタック開発に適しています。 2)学習曲線:Python構文は簡潔で初心者に適しています。 JavaScriptの構文は柔軟です。 3)エコシステム:Pythonには豊富な科学コンピューティングライブラリがあり、JavaScriptには強力なフロントエンドフレームワークがあります。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)