検索
ホームページウェブフロントエンドjsチュートリアルダイクストラアルゴリズムを理解する: 理論から実装まで

Understanding Dijkstra

ダイクストラのアルゴリズムは、グラフ理論でソース ノードからグラフ内の他のすべてのノードへの最短パスを見つけるために使用される古典的な経路探索アルゴリズムです。この記事では、アルゴリズムとその正しさの証明を検討し、JavaScript での実装を提供します。

ダイクストラのアルゴリズムとは何ですか?

ダイクストラのアルゴリズムは、非負のエッジ重みを持つ重み付きグラフ内の単一のソース ノードからの最短パスを見つけるように設計された貪欲なアルゴリズムです。これは 1956 年に Edsger W. Dijkstra によって提案され、現在でもコンピューター サイエンスで最も広く使用されているアルゴリズムの 1 つです。

入出力

  • 入力: グラフ G=(VE)G = (V, E) G=(V,E) 、 どこ VV V は頂点の集合であり、 EE E はエッジのセットとソースノードです sVs in V s∈V .
  • 出力: からの最短パス距離 ss s の他のすべてのノードに VV V .

中心となる概念

  1. 緩和: ノードまでの既知の最短距離を更新するプロセス。
  2. Priority Queue: 暫定距離が最小のノードを効率的にフェッチします。
  3. 貪欲なアプローチ: 距離が短い順にノードを処理します。

アルゴリズム

  1. 距離の初期化:

    dist(s )=0,dist(v)= vs テキスト{dist}(s) = 0、テキスト{dist}(v) = infty ;クワッドフォーオールvneq s dist(s)=0,dist(v)=∞∀v=s
  2. 優先キューを使用して、距離に基づいてノードを保存します。

  3. 距離が最小のノードを繰り返し抽出し、その近傍を緩和します。

リラクゼーション - 数学的説明

  • 初期化: dist(s)=0,dist(v )= すべて vstext{dist}(s) = 0、text{dist}(v) = infty、text{for all}、v neq s dist(s)=0,dist(v)=のためにllv=s

どこ (s)( s ) (s) はソースノードであり、 (v)( v ) (v) 他のノードを表します。

  • リラックスステップ: 各エッジごと (u,v) (う、う) (u,v) 重さで w(u,v )w(u, v) w(u,v) : もし dist(v)>dist(u) w(u,v)text{距離}(v) > text{dist}(u) w(u, v) dist(v)>dist (う) w(u,v) 、 アップデート:
    dist(v) =dist(u) w(u,v),prev(v)=utext{dist}(v ) = text{dist}(u) w(u, v)、quad text{prev}(v) = u dist(v)=dist(u) w(u,v),(v)=u

機能する理由: 緩和により、より短いパスが見つかった場合に距離を段階的に更新することで、ノードへの最短パスが常に見つかるようになります。


優先キュー - 数学的説明

  • キュー操作:

    • 優先キューは常にノードをデキューします (u)( u ) (u) 最小の暫定距離:
      u=a rg vQdist(v)u = arg min_{v in Q} text{dist}(v) u=arg v∈Q 距離(v)
    • なぜ機能するのか: 最小のノードを処理することによって (dist(v) )( text{dist}(v) ) (dist(v)) 、ソースからへの最短パスを保証します。 (u)( u ) (u) .

正しさの証明

強帰納法を使用してダイクストラのアルゴリズムの正しさを証明します。

強力な誘導とは何ですか?

強い帰納法は数学的帰納法の変形であり、ステートメントを証明するために、 (P(n) )( P(n) ) (P(n)) 、私たちは次の真実を仮定します (P( 1),P(2)P(k))( P(1), P(2), ドット, P(k) ) (P(1),P(2),…,P(k)) 証明する (P(k 1))( P(k 1) ) ( P(k 1)) 。これは、次のことだけを前提とする通常の誘導とは異なります。 (P(k) )( P(k) ) (P(k)) 証明する (P(k 1))( P(k 1) ) ( P(k 1)) 。私の他の投稿で詳しく調べてください。

ダイクストラのアルゴリズムの正しさ (帰納的証明)

  1. 基本ケース:

    ソースノード (s)( s ) (s) で初期化されます dist(s)=0テキスト{距離}(s) = 0 距離(s)=0 正解です。

  2. 帰納仮説:

    これまでに処理されたすべてのノードには正しい最短パス距離があると仮定します。

  3. 帰納的ステップ:

    次のノード (u)( u ) (u) 優先キューからデキューされます。以来 dist(u)text{dist} (う) 距離(u) は残りの最小距離であり、以前のノードはすべて正しい距離を持っています。 dist(u)text{dist} (う) 距離(u)

  4. も正しいです。

JavaScriptの実装

前提条件 (優先キュー):

// Simplified Queue using Sorting
// Use Binary Heap (good)
// or  Binomial Heap (better) or Pairing Heap (best) 
class PriorityQueue {
  constructor() {
    this.queue = [];
  }

  enqueue(node, priority) {
    this.queue.push({ node, priority });
    this.queue.sort((a, b) => a.priority - b.priority);
  }

  dequeue() {
    return this.queue.shift();
  }

  isEmpty() {
    return this.queue.length === 0;
  }
}

これは、優先キューを使用したダイクストラのアルゴリズムの JavaScript 実装です。

function dijkstra(graph, start) {
  const distances = {}; // hold the shortest distance from the start node to all other nodes
  const previous = {}; // Stores the previous node for each node in the shortest path (used to reconstruct the path later).
  const pq = new PriorityQueue(); // Used to efficiently retrieve the node with the smallest tentative distance.

  // Initialize distances and previous
  for (let node in graph) {
    distances[node] = Infinity; // Start with infinite distances
    previous[node] = null; // No previous nodes at the start
  }
  distances[start] = 0; // Distance to the start node is 0

  pq.enqueue(start, 0);

  while (!pq.isEmpty()) {
    const { node } = pq.dequeue(); // Get the node with the smallest tentative distance

    for (let neighbor in graph[node]) {
      const distance = graph[node][neighbor]; // The edge weight
      const newDist = distances[node] + distance;

      // Relaxation Step
      if (newDist 


パスを再構築

// Simplified Queue using Sorting
// Use Binary Heap (good)
// or  Binomial Heap (better) or Pairing Heap (best) 
class PriorityQueue {
  constructor() {
    this.queue = [];
  }

  enqueue(node, priority) {
    this.queue.push({ node, priority });
    this.queue.sort((a, b) => a.priority - b.priority);
  }

  dequeue() {
    return this.queue.shift();
  }

  isEmpty() {
    return this.queue.length === 0;
  }
}

チュートリアルの例

グラフ表現

  • ノード: ABCDA、 B、C、D A、B、C、D
  • エッジ:
    • AB=( 1)AC=(4)A ~B = (1)、A ~ C = (4) A→B=(1),A→C=(4)
    • BC=( 2)BD=(5)B C ~ C = (2)、B ~ D = (5) B→C=(2),B→D=(5)
    • CD=(1)C to D = (1) C→D=(1)

ステップバイステップの実行

  1. 距離の初期化:

    dist(A)= 0 , dist(B)= dist(C)= dist(D)= テキスト{距離}(A) = 0, ; text{dist}(B) = infty, ; text{dist}(C) = infty, ;テキスト{距離}(D) = 無限 dist(A)=0,dist(B)= ∞、距離(C)=∞、距離(D)=
  2. プロセス A:

    • エッジをリラックス: ABAC.A A→B,A→C.
      距離(B)=1, dist(C)=4テキスト{距離}(B) = 1, ;テキスト{距離}(C) = 4 dist(B)=1,dist(C)=4
  3. プロセス B:

    • エッジをリラックス: BCBD.B B→C,B→D.
      距離(C)=3, dist(D)=6テキスト{距離}(C) = 3, ;テキスト{距離}(D) = 6 dist(C)=3,dist(D)=6
  4. プロセス C:

    • リラックスエッジ: CD.C から D。 C→D.
      dist(D)=4テキスト{距離}(D) = 4 dist(D)=4
    • プロセス D:

      • 今後の更新はありません。
    • 最終的な距離とパス

      dist(A)= 0 , dist(B)=1 dist(C)= 3 dist(D)=4 テキスト{距離}(A) = 0, ;テキスト{距離}(B) = 1, ;テキスト{距離}(C) = 3, ;テキスト{距離}(D) = 4 dist(A)=0,dist(B)= 1、距離(C)=3、距離(D)=4

      AB CD AからB、C、Dへ A→B→C→D

      最適化と時間計算量

      ダイクストラのアルゴリズムの時間計算量をさまざまな優先キュー実装と比較:

      Priority Queue Type Insert (M) Extract Min Decrease Key Overall Time Complexity
      Simple Array O(1) O(V) O(V) O(V^2)
      Binary Heap O(log V) O(log V) O(log V) O((V E) log V)
      Binomial Heap O(log V) O(log V) O(log V) O((V E) log V)
      Fibonacci Heap O(1) O(log V) O(1) O(V log V E)
      Pairing Heap O(1) O(log V) O(log V) O(V log V E) (practical)

      重要なポイント:

      1. 単純な配列:
        • extract-min の線形検索のため、大きなグラフでは非効率的です。
      2. バイナリ ヒープ:
        • シンプルさと効率のバランスが取れているため、標準であり、一般的に使用されています。
      3. 二項ヒープ:
        • 理論上の保証はわずかに優れていますが、実装はより複雑です。
      4. フィボナッチ ヒープ:
        • ( O(1) ) 償却減少キーを使用すると最高の理論的パフォーマンスが得られますが、実装は困難です。
      5. ヒープのペアリング:
        • シンプルで、実際にはフィボナッチ ヒープに近いパフォーマンスを発揮します。

      結論

      ダイクストラのアルゴリズムは、非負の重みを持つグラフ内の最短経路を見つけるための強力かつ効率的な方法です。制限はありますが (負のエッジの重みを処理できないなど)、ネットワーキング、ルーティング、その他のアプリケーションで広く使用されています。

      • リラクゼーションは、パスを繰り返し更新することで最短距離を保証します。
      • Priority Queue は、常に最も近いノードを処理し、正確さを維持することを保証します。
      • 正確さは帰納法によって証明されます。ノードの距離が確定すると、それが最短パスであることが保証されます。

      ここでは、厳密な証明と例とともにダイクストラのアルゴリズムを探索できる詳細なリソースをいくつか紹介します。

      • ダイクストラのアルゴリズム PDF
      • SlideShare の最短パス アルゴリズム

      さらに、ウィキペディアではこのトピックの優れた概要が提供されています。

      引用:
      [1] https://www.fuhuthu.com/CPSC420F2019/dijkstra.pdf

      ご意見や改善点をコメントでお気軽に共有してください!

以上がダイクストラアルゴリズムを理解する: 理論から実装までの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
CおよびJavaScript:接続が説明しましたCおよびJavaScript:接続が説明しましたApr 23, 2025 am 12:07 AM

CおよびJavaScriptは、WebAssemblyを介して相互運用性を実現します。 1)CコードはWebAssemblyモジュールにコンパイルされ、JavaScript環境に導入され、コンピューティングパワーが強化されます。 2)ゲーム開発では、Cは物理エンジンとグラフィックスレンダリングを処理し、JavaScriptはゲームロジックとユーザーインターフェイスを担当します。

Webサイトからアプリまで:JavaScriptの多様なアプリケーションWebサイトからアプリまで:JavaScriptの多様なアプリケーションApr 22, 2025 am 12:02 AM

JavaScriptは、Webサイト、モバイルアプリケーション、デスクトップアプリケーション、サーバー側のプログラミングで広く使用されています。 1)Webサイト開発では、JavaScriptはHTMLおよびCSSと一緒にDOMを運用して、JQueryやReactなどのフレームワークをサポートします。 2)ReactNativeおよびIonicを通じて、JavaScriptはクロスプラットフォームモバイルアプリケーションを開発するために使用されます。 3)電子フレームワークにより、JavaScriptはデスクトップアプリケーションを構築できます。 4)node.jsを使用すると、JavaScriptがサーバー側で実行され、高い並行リクエストをサポートします。

Python vs. JavaScript:ユースケースとアプリケーションと比較されますPython vs. JavaScript:ユースケースとアプリケーションと比較されますApr 21, 2025 am 12:01 AM

Pythonはデータサイエンスと自動化により適していますが、JavaScriptはフロントエンドとフルスタックの開発により適しています。 1. Pythonは、データ処理とモデリングのためにNumpyやPandasなどのライブラリを使用して、データサイエンスと機械学習でうまく機能します。 2。Pythonは、自動化とスクリプトにおいて簡潔で効率的です。 3. JavaScriptはフロントエンド開発に不可欠であり、動的なWebページと単一ページアプリケーションの構築に使用されます。 4. JavaScriptは、node.jsを通じてバックエンド開発において役割を果たし、フルスタック開発をサポートします。

JavaScript通訳者とコンパイラにおけるC/Cの役割JavaScript通訳者とコンパイラにおけるC/Cの役割Apr 20, 2025 am 12:01 AM

CとCは、主に通訳者とJITコンパイラを実装するために使用されるJavaScriptエンジンで重要な役割を果たします。 1)cは、JavaScriptソースコードを解析し、抽象的な構文ツリーを生成するために使用されます。 2)Cは、Bytecodeの生成と実行を担当します。 3)Cは、JITコンパイラを実装し、実行時にホットスポットコードを最適化およびコンパイルし、JavaScriptの実行効率を大幅に改善します。

JavaScript in Action:実際の例とプロジェクトJavaScript in Action:実際の例とプロジェクトApr 19, 2025 am 12:13 AM

現実世界でのJavaScriptのアプリケーションには、フロントエンドとバックエンドの開発が含まれます。 1)DOM操作とイベント処理を含むTODOリストアプリケーションを構築して、フロントエンドアプリケーションを表示します。 2)node.jsを介してRestfulapiを構築し、バックエンドアプリケーションをデモンストレーションします。

JavaScriptとWeb:コア機能とユースケースJavaScriptとWeb:コア機能とユースケースApr 18, 2025 am 12:19 AM

Web開発におけるJavaScriptの主な用途には、クライアントの相互作用、フォーム検証、非同期通信が含まれます。 1)DOM操作による動的なコンテンツの更新とユーザーインタラクション。 2)ユーザーエクスペリエンスを改善するためにデータを提出する前に、クライアントの検証が実行されます。 3)サーバーとのリフレッシュレス通信は、AJAXテクノロジーを通じて達成されます。

JavaScriptエンジンの理解:実装の詳細JavaScriptエンジンの理解:実装の詳細Apr 17, 2025 am 12:05 AM

JavaScriptエンジンが内部的にどのように機能するかを理解することは、開発者にとってより効率的なコードの作成とパフォーマンスのボトルネックと最適化戦略の理解に役立つためです。 1)エンジンのワークフローには、3つの段階が含まれます。解析、コンパイル、実行。 2)実行プロセス中、エンジンはインラインキャッシュや非表示クラスなどの動的最適化を実行します。 3)ベストプラクティスには、グローバル変数の避け、ループの最適化、constとletsの使用、閉鎖の過度の使用の回避が含まれます。

Python vs. JavaScript:学習曲線と使いやすさPython vs. JavaScript:学習曲線と使いやすさApr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン