コーヒー買ってきて☕
*私の投稿では Caltech 101 について説明しています。
Caltech101() は、以下に示すように Caltech 101 データセットを使用できます。
*メモ:
- 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
- 2 番目の引数は target_type(Optional-Default:"category"-Type:str またはタプルまたは str のリスト) です。
*メモ:
- 「カテゴリ」や「アノテーション」を設定できます。
- 101 のカテゴリ (クラス) のラベルが付いた、および/または注釈が付いた 8.677 個の画像が返されます。
- 3 番目の引数は、transform(Optional-Default:None-Type:callable) です。
- 4 番目の引数は target_transform(Optional-Default:None-Type:callable) です。
- 5 番目の引数は download(Optional-Default:False-Type:bool) です。
*メモ:
- True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
- これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
- これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
- データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
- データセットをダウンロードするには gdown が必要です。
- データセット (101_ObjectCategories.tar.gz および Annotations.tar) をここから data/caltech101/ に手動でダウンロードして抽出できます。
- 画像インデックスのカテゴリ(ラベル)について、Faces(0)は0~434、Faces_easy(1)は435~869、Leopards(2)は870~1069、 バイク(3) は 1070 ~ 1867 年、アコーディオン(4) は 1868 ~ 1922 年、飛行機(5) は 1923 ~ 2722 年、アンカー(6)は2723~2764、アリ(7)は2765~2806、バレル(8)は2807~2853、バス(9)は2854~2907など。
from torchvision.datasets import Caltech101 category_data = Caltech101( root="data" ) category_data = Caltech101( root="data", target_type="category", transform=None, target_transform=None, download=False ) annotation_data = Caltech101( root="data", target_type="annotation" ) all_data = Caltech101( root="data", target_type=["category", "annotation"] ) len(category_data), len(annotation_data), len(all_data) # (8677, 8677, 8677) category_data # Dataset Caltech101 # Number of datapoints: 8677 # Root location: data\caltech101 # Target type: ['category'] category_data.root # 'data/caltech101' category_data.target_type # ['category'] print(category_data.transform) # None print(category_data.target_transform) # None category_data.download # <bound method caltech101.download of dataset caltech101 number datapoints: root location: data target type:> len(category_data.categories) # 101 category_data.categories # ['Faces', 'Faces_easy', 'Leopards', 'Motorbikes', 'accordion', # 'airplanes', 'anchor', 'ant', 'barrel', 'bass', 'beaver', # 'binocular', 'bonsai', 'brain', 'brontosaurus', 'buddha', # 'butterfly', 'camera', 'cannon', 'car_side', 'ceiling_fan', # 'cellphone', 'chair', 'chandelier', 'cougar_body', 'cougar_face', ...] len(category_data.annotation_categories) # 101 category_data.annotation_categories # ['Faces_2', 'Faces_3', 'Leopards', 'Motorbikes_16', 'accordion', # 'Airplanes_Side_2', 'anchor', 'ant', 'barrel', 'bass', # 'beaver', 'binocular', 'bonsai', 'brain', 'brontosaurus', # 'buddha', 'butterfly', 'camera', 'cannon', 'car_side', # 'ceiling_fan', 'cellphone', 'chair', 'chandelier', 'cougar_body', ...] category_data[0] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, 0) category_data[1] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, 0) category_data[2] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, 0) category_data[435] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="290x334">, 1) category_data[870] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="192x128">, 2) annotation_data[0] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, # array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...], # [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]])) annotation_data[1] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, # array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...], # [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]])) annotation_data[2] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, # array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...], # [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]])) annotation_data[435] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="290x334">, # array([[64.52631579, 95.31578947, 123.26315789, 149.31578947, ...], # [15.42105263, 8.31578947, 10.21052632, 28.21052632, ...]])) annotation_data[870] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="192x128">, # array([[2.96536524, 7.55604534, 19.45780856, 33.73992443, ...], # [23.63413098, 32.13539043, 33.83564232, 8.84193955, ...]])) all_data[0] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, # (0, array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...], # [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]])) all_data[1] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, # (0, array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...], # [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]])) all_data[2] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, # (0, array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...], # [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]])) all_data[3] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="538x355">, # (0, array([[19.54035088, 18.57894737, 26.27017544, 38.2877193, ...], # [131.49122807, 100.24561404, 74.2877193, 49.29122807, ...]])) all_data[4] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="528x349">, # (0, array([[11.87982456, 11.87982456, 13.86578947, 15.35526316, ...], # [128.34649123, 105.50789474, 91.60614035, 76.71140351, ...]])) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) ims = (0, 1, 2, 435, 870, 1070, 1868, 1923, 2723, 2765, 2807, 2854) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) if len(data.target_type) == 1: if data.target_type[0] == "category": im, lab = data[j] plt.title(label=lab) elif data.target_type[0] == "annotation": im, (px, py) = data[j] plt.scatter(x=px, y=py) plt.imshow(X=im) elif len(data.target_type) == 2: if data.target_type[0] == "category": im, (lab, (px, py)) = data[j] elif data.target_type[0] == "annotation": im, ((px, py), lab) = data[j] plt.title(label=lab) plt.imshow(X=im) plt.scatter(x=px, y=py) if i == 10: break plt.tight_layout() plt.show() show_images(data=category_data, main_title="category_data") show_images(data=annotation_data, main_title="annotation_data") show_images(data=all_data, main_title="all_data") </pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></bound>
以上がPyTorch のカリフォルニア工科大学の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ホットトピック









