検索

PyTorch の QMNIST

Dec 11, 2024 pm 04:01 PM

コーヒー買ってきて☕

*私の投稿では QMNIST について説明しています。

QMNIST() は、以下に示すように QMNIST データセットを使用できます。

*メモ:

  • 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
  • 2 番目の引数は what(Optional-Default:None-Type:str) です。 ※「train」(60,000枚)、「test」(60,000枚)、「test10k」(10,000枚)、「test50k」(50,000枚)、「nist」(402,953枚)が設定可能です。
  • 3 番目の引数は compat(Optional-Default:True-Type:bool) です。 *True の場合、各イメージのクラス番号が返されます (MNIST データローダーとの互換性のため)。False の場合、完全な qmnist 情報の 1D テンソルが返されます。
  • 4 番目の引数は train 引数(Optional-Default:True-Type:bool): *メモ:
    • None でない場合は無視されます。
    • Trueの場合はトレーニングデータ(60,000枚)が使用され、Falseの場合はテストデータ(60,000枚)が使用されます。
  • 変換引数(Optional-Default:None-Type:callable)があります。 *transform= を使用する必要があります。
  • target_transform引数(Optional-Default:None-Type:callable)があります。 *target_transform= を使用する必要があります。
  • ダウンロード引数があります(Optional-Default:False-Type:bool): *メモ:
    • download= を使用する必要があります。
    • True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
    • これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
    • これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
    • データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
    • ここからデータセットを手動でダウンロードして抽出できます。データ/QMNIST/生/。
from torchvision.datasets import QMNIST

train_data = QMNIST(
    root="data"
)

train_data = QMNIST(
    root="data",
    what=None,
    compat=True,
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

train_data = QMNIST(
    root="data",
    what="train",
    train=False
)

test_data1 = QMNIST(
    root="data",
    train=False
)

test_data1 = QMNIST(
    root="data",
    what="test",
    train=True
)

test_data2 = QMNIST(
    root="data",
    what="test10k"
)

test_data3 = QMNIST(
    root="data",
    what="test50k",
    compat=False
)

nist_data = QMNIST(
    root="data",
    what="nist"
)

l = len
l(train_data), l(test_data1), l(test_data2), l(test_data3), l(nist_data)
# (60000, 60000, 10000, 50000, 402953)

train_data
# Dataset QMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: train

train_data.root
# 'data'

train_data.what
# 'train'

train_data.compat
# True

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method qmnist.download of dataset qmnist number datapoints: root location: data split: train>

train_data[0]
# (<pil.image.image image mode="L" size="28x28">, 5)

test_data3[0]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([3, 4, 2424, 51, 33, 261051, 0, 0]))

train_data[1]
# (<pil.image.image image mode="L" size="28x28">, 0)

test_data3[1]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([8, 1, 522, 60, 38, 55979, 0, 0]))

train_data[2]
# (<pil.image.image image mode="L" size="28x28">, 4)

test_data3[2]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([9, 4, 2496, 115, 39, 269531, 0, 0]))

train_data[3]
# (<pil.image.image image mode="L" size="28x28">, 1)

test_data3[3]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([5, 4, 2427, 77, 35, 261428, 0, 0]))

train_data[4]
# (<pil.image.image image mode="L" size="28x28">, 9)

test_data3[4]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([7, 4, 2524, 69, 37, 272828, 0, 0]))

train_data.classes
# ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
#  '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
</pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import QMNIST

train_data = QMNIST(
    root="data",
    what="train"
)

test_data1 = QMNIST(
    root="data",
    what="test"
)

test_data2 = QMNIST(
    root="data",
    what="test10k"
)

test_data3 = QMNIST(
    root="data",
    what="test50k"
)

nist_data = QMNIST(
    root="data",
    what="nist"
)

import matplotlib.pyplot as plt

def show_images(data):
    plt.figure(figsize=(12, 2))
    col = 5
    for i, (image, label) in enumerate(data, 1):
        plt.subplot(1, col, i)
        plt.title(label)
        plt.imshow(image)
        if i == col:
            break
    plt.show()

show_images(data=train_data)
show_images(data=test_data1)
show_images(data=test_data2)
show_images(data=test_data3)
show_images(data=nist_data)

QMNIST in PyTorch

以上がPyTorch の QMNISTの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
PythonスクリプトがUNIXで実行されない可能性がある一般的な理由は何ですか?PythonスクリプトがUNIXで実行されない可能性がある一般的な理由は何ですか?Apr 28, 2025 am 12:18 AM

PythonスクリプトがUNIXシステムで実行できない理由には、次のものが含まれます。1)CHMOD XYOUR_SCRIPT.PYを使用して実行権限を付与する不十分な権限。 2)shebangラインが正しくないか欠落している場合、#!/usr/bin/envpythonを使用する必要があります。 3)環境可変設定が誤っていない場合、OS.Environデバッグを印刷できます。 4)間違ったPythonバージョンを使用して、Shebangラインまたはコマンドラインでバージョンを指定できます。 5)仮想環境を使用して依存関係を分離する依存関係の問題。 6)構文エラー、python-mpy_compileyour_script.pyを使用して検出します。

Pythonアレイを使用することがリストを使用するよりも適切なシナリオの例を挙げてください。Pythonアレイを使用することがリストを使用するよりも適切なシナリオの例を挙げてください。Apr 28, 2025 am 12:15 AM

Pythonアレイの使用は、リストよりも大量の数値データの処理に適しています。 1)配列を保存するメモリを保存します。2)アレイは数値的な値で動作するのが高速です。3)アレイフォースタイプの一貫性、4)アレイはCアレイと互換性がありますが、リストほど柔軟で便利ではありません。

Pythonでリストと配列を使用することのパフォーマンスへの影響は何ですか?Pythonでリストと配列を使用することのパフォーマンスへの影響は何ですか?Apr 28, 2025 am 12:10 AM

listSareのより良い前提条件とmixdatatypes、whilearraysares優れたスナリカル計算砂の砂を大きくしたデータセット。

Numpyは、大きな配列のメモリ管理をどのように処理しますか?Numpyは、大きな配列のメモリ管理をどのように処理しますか?Apr 28, 2025 am 12:07 AM

numpymanagesmemoryforlargearrayseffictificleusing biews、copies、andmemory-mappedfiles.1)rewsinging withotingcopying、directmodifying theoriginalArray.2)copiescanbecreatedwithcopy()methodforpreservingdata.3)Memory-MapplehandLemassiutasedatasetasedatasetasetasetasetasetasedas

モジュールのインポートが必要なのはどれですか:リストまたは配列は?モジュールのインポートが必要なのはどれですか:リストまたは配列は?Apr 28, 2025 am 12:06 AM

listsinpythondonotrequireimportingamodule、whilearrays fromthearraymoduledoneedanimport.1)listsarebuiltin、versatile、andcanholdmixeddatypes.2)araysaremoremory-efficient-fornumerumerumerumerumerumerdatabutでき、対象となるンドベフェフサメタイプ。

どのデータ型をPythonアレイに保存できますか?どのデータ型をPythonアレイに保存できますか?Apr 27, 2025 am 12:11 AM

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

Pythonアレイに間違ったデータ型の値を保存しようとするとどうなりますか?Pythonアレイに間違ったデータ型の値を保存しようとするとどうなりますか?Apr 27, 2025 am 12:10 AM

heouttemptemptostoreavure ofthewrongdatatypeinapythonarray、yure counteractypeerror.thisduetothearraymodule'sstricttypeeencultionyを使用します

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか?Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか?Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!