コーヒー買ってきて☕
*私の投稿では QMNIST について説明しています。
QMNIST() は、以下に示すように QMNIST データセットを使用できます。
*メモ:
- 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
- 2 番目の引数は what(Optional-Default:None-Type:str) です。 ※「train」(60,000枚)、「test」(60,000枚)、「test10k」(10,000枚)、「test50k」(50,000枚)、「nist」(402,953枚)が設定可能です。
- 3 番目の引数は compat(Optional-Default:True-Type:bool) です。 *True の場合、各イメージのクラス番号が返されます (MNIST データローダーとの互換性のため)。False の場合、完全な qmnist 情報の 1D テンソルが返されます。
- 4 番目の引数は train 引数(Optional-Default:True-Type:bool):
*メモ:
- None でない場合は無視されます。
- Trueの場合はトレーニングデータ(60,000枚)が使用され、Falseの場合はテストデータ(60,000枚)が使用されます。
- 変換引数(Optional-Default:None-Type:callable)があります。 *transform= を使用する必要があります。
- target_transform引数(Optional-Default:None-Type:callable)があります。 *target_transform= を使用する必要があります。
- ダウンロード引数があります(Optional-Default:False-Type:bool):
*メモ:
- download= を使用する必要があります。
- True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
- これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
- これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
- データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
- ここからデータセットを手動でダウンロードして抽出できます。データ/QMNIST/生/。
from torchvision.datasets import QMNIST train_data = QMNIST( root="data" ) train_data = QMNIST( root="data", what=None, compat=True, train=True, transform=None, target_transform=None, download=False ) train_data = QMNIST( root="data", what="train", train=False ) test_data1 = QMNIST( root="data", train=False ) test_data1 = QMNIST( root="data", what="test", train=True ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k", compat=False ) nist_data = QMNIST( root="data", what="nist" ) l = len l(train_data), l(test_data1), l(test_data2), l(test_data3), l(nist_data) # (60000, 60000, 10000, 50000, 402953) train_data # Dataset QMNIST # Number of datapoints: 60000 # Root location: data # Split: train train_data.root # 'data' train_data.what # 'train' train_data.compat # True train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method qmnist.download of dataset qmnist number datapoints: root location: data split: train> train_data[0] # (<pil.image.image image mode="L" size="28x28">, 5) test_data3[0] # (<pil.image.image image mode="L" size="28x28">, # tensor([3, 4, 2424, 51, 33, 261051, 0, 0])) train_data[1] # (<pil.image.image image mode="L" size="28x28">, 0) test_data3[1] # (<pil.image.image image mode="L" size="28x28">, # tensor([8, 1, 522, 60, 38, 55979, 0, 0])) train_data[2] # (<pil.image.image image mode="L" size="28x28">, 4) test_data3[2] # (<pil.image.image image mode="L" size="28x28">, # tensor([9, 4, 2496, 115, 39, 269531, 0, 0])) train_data[3] # (<pil.image.image image mode="L" size="28x28">, 1) test_data3[3] # (<pil.image.image image mode="L" size="28x28">, # tensor([5, 4, 2427, 77, 35, 261428, 0, 0])) train_data[4] # (<pil.image.image image mode="L" size="28x28">, 9) test_data3[4] # (<pil.image.image image mode="L" size="28x28">, # tensor([7, 4, 2524, 69, 37, 272828, 0, 0])) train_data.classes # ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', # '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine'] </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import QMNIST train_data = QMNIST( root="data", what="train" ) test_data1 = QMNIST( root="data", what="test" ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k" ) nist_data = QMNIST( root="data", what="nist" ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data1) show_images(data=test_data2) show_images(data=test_data3) show_images(data=nist_data)
以上がPyTorch の QMNISTの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonスクリプトがUNIXシステムで実行できない理由には、次のものが含まれます。1)CHMOD XYOUR_SCRIPT.PYを使用して実行権限を付与する不十分な権限。 2)shebangラインが正しくないか欠落している場合、#!/usr/bin/envpythonを使用する必要があります。 3)環境可変設定が誤っていない場合、OS.Environデバッグを印刷できます。 4)間違ったPythonバージョンを使用して、Shebangラインまたはコマンドラインでバージョンを指定できます。 5)仮想環境を使用して依存関係を分離する依存関係の問題。 6)構文エラー、python-mpy_compileyour_script.pyを使用して検出します。

Pythonアレイの使用は、リストよりも大量の数値データの処理に適しています。 1)配列を保存するメモリを保存します。2)アレイは数値的な値で動作するのが高速です。3)アレイフォースタイプの一貫性、4)アレイはCアレイと互換性がありますが、リストほど柔軟で便利ではありません。

listSareのより良い前提条件とmixdatatypes、whilearraysares優れたスナリカル計算砂の砂を大きくしたデータセット。

numpymanagesmemoryforlargearrayseffictificleusing biews、copies、andmemory-mappedfiles.1)rewsinging withotingcopying、directmodifying theoriginalArray.2)copiescanbecreatedwithcopy()methodforpreservingdata.3)Memory-MapplehandLemassiutasedatasetasedatasetasetasetasetasetasedas

listsinpythondonotrequireimportingamodule、whilearrays fromthearraymoduledoneedanimport.1)listsarebuiltin、versatile、andcanholdmixeddatypes.2)araysaremoremory-efficient-fornumerumerumerumerumerumerdatabutでき、対象となるンドベフェフサメタイプ。

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

heouttemptemptostoreavure ofthewrongdatatypeinapythonarray、yure counteractypeerror.thisduetothearraymodule'sstricttypeeencultionyを使用します

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

メモ帳++7.3.1
使いやすく無料のコードエディター

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ホットトピック









