顧客離れを予測するためのデシジョン ツリー分類子の例
概要
このプロジェクトでは、デシジョン ツリー分類子を使用して顧客の離脱 (顧客がサービスを離れるかどうか) を予測する方法を示します。このデータセットには、顧客が離脱するかどうかを予測することを目的として、年齢、月額料金、カスタマー サービスへの通話などの機能が含まれています。
モデルは Scikit-learn のデシジョン ツリー分類器を使用してトレーニングされ、コードはデシジョン ツリーを視覚化して、モデルがどのように意思決定を行っているかをよりよく理解します。
使用されている技術
- Python 3.x: モデルの構築に使用される主な言語。
- Pandas: データ操作とデータセットの処理用。
- Matplotlib: データ視覚化 (デシジョン ツリーのプロット) 用。
- Scikit-learn: モデルのトレーニングと評価を含む機械学習用。
手順の説明
1. 必要なライブラリをインポートします
import pandas as pd import matplotlib.pyplot as plt import warnings from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn import tree
-
パンダ (pd):
- これは、データ操作と DataFrame 形式へのデータのロードに使用されます。 DataFrame を使用すると、テーブル (行と列) のような構造化データを整理および操作できます。
-
Matplotlib (plt):
- これは、データを視覚化するために使用されるプロット ライブラリです。ここでは、デシジョン ツリーをグラフィカルにプロットするために使用されており、ツリーの各ノードで意思決定がどのように行われるかを理解するのに役立ちます。
-
警告 (警告):
- 警告モジュールは、警告を抑制または処理するために使用されます。このコードでは、出力をクリーンで読みやすい状態に保つために、不要な警告を無視しています。
-
Scikit-learn ライブラリ:
- train_test_split: この関数は、データセットをトレーニングとテストのサブセットに分割します。トレーニング データはモデルの適合に使用され、テスト データはパフォーマンスの評価に使用されます。
- DecisionTreeClassifier: これは、データを分類し、顧客離れを予測するために使用されるモデルです。デシジョン ツリーは、特徴に基づいて意思決定のツリー状モデルを作成することで機能します。
- accuracy_score: この関数は、予測値とターゲット変数 (チャーン) の実際の値を比較することによって、モデルの精度を計算します。
- tree: このモジュールには、トレーニング後のデシジョン ツリーを視覚化するための関数が含まれています。
2. 警告の抑制
import pandas as pd import matplotlib.pyplot as plt import warnings from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn import tree
- この行は、Python にすべての警告を無視するように指示します。これは、モデルを実行していて、警告 (非推奨の関数に関する警告など) によって出力が煩雑になることを望まない場合に役立ちます。
3. 合成データセットの作成
warnings.filterwarnings("ignore")
-
ここでは、プロジェクトの 合成データセット を作成します。このデータセットは、年齢、月次料金、CustomerServiceCalls、およびターゲット変数 Churn (顧客が解約したかどうか) などの機能を使用して、通信会社の顧客情報をシミュレートします。
- CustomerID: 各顧客の一意の識別子。
- 年齢: お客様の年齢
- MonthlyCharge: 顧客の毎月の請求書。
- CustomerServiceCalls: 顧客がカスタマー サービスに電話した回数。
- 解約: 顧客が解約したかどうか (はい/いいえ)。
Pandas DataFrame: データは、2 次元のラベル付きデータ構造である DataFrame (df) として構造化されており、データの操作と分析が容易になります。
4. データを特徴とターゲット変数に分割する
import pandas as pd import matplotlib.pyplot as plt import warnings from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn import tree
- 特徴 (X): ターゲットを予測するために使用される独立変数。この場合、Age、MonthlyCharge、CustomerServiceCalls が含まれます。
- ターゲット変数 (y): 従属変数。予測しようとしている値です。ここでは、顧客が離脱するかどうかを示す Churn 列です。
5. データをトレーニング セットとテスト セットに分割する
warnings.filterwarnings("ignore")
-
train_test_split は、データセットを 2 つの部分、トレーニング セット (モデルのトレーニングに使用される) と テスト セット (モデルの評価に使用される) に分割します。
- test_size=0.3: データの 30% がテスト用に確保され、残りの 70% がトレーニングに使用されます。
- random_state=42 は、乱数生成器のシードを固定することで結果の再現性を保証します。
6. デシジョン ツリー モデルのトレーニング
data = { 'CustomerID': range(1, 101), # Unique ID for each customer 'Age': [20, 25, 30, 35, 40, 45, 50, 55, 60, 65]*10, # Age of customers 'MonthlyCharge': [50, 60, 70, 80, 90, 100, 110, 120, 130, 140]*10, # Monthly bill amount 'CustomerServiceCalls': [1, 2, 3, 4, 0, 1, 2, 3, 4, 0]*10, # Number of customer service calls 'Churn': ['No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes']*10 # Churn status } df = pd.DataFrame(data) print(df.head())
- DecisionTreeClassifier() はデシジョン ツリー モデルを初期化します。
- clf.fit(X_train, y_train) は、トレーニング データを使用してモデルをトレーニングします。モデルは、X_train 特徴からパターンを学習して、y_train ターゲット変数を予測します。
7. 予測を立てる
X = df[['Age', 'MonthlyCharge', 'CustomerServiceCalls']] # Features y = df['Churn'] # Target Variable
- clf.predict(X_test): モデルがトレーニングされた後、テスト セット (X_test) で予測を行うために使用されます。これらの予測値は y_pred に保存され、実際の値 (y_test) と比較してモデルを評価します。
8. モデルの評価
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
- accuracy_score(y_test, y_pred) は、予測されたチャーン ラベル (y_pred) とテスト セットの実際のチャーン ラベル (y_test) を比較することにより、モデルの精度を計算します。
- 精度は、どれだけの予測が正しかったかを示す尺度です。評価用に印刷されます。
9. デシジョンツリーの視覚化
clf = DecisionTreeClassifier() clf.fit(X_train, y_train)
- tree.plot_tree(clf,filled=True): トレーニングされたデシジョン ツリー モデルを視覚化します。 filled=True 引数は、クラス ラベル (チャーン/チャーンなし) に基づいてノードを色付けします。
- feature_names: ツリーに表示する機能 (独立変数) の名前を指定します。
- class_names: ターゲット変数 (Churn) のクラス ラベルを指定します。
- plt.show(): ツリーの視覚化を表示します。
コードの実行
- リポジトリのクローンを作成するか、スクリプトをダウンロードします。
- 依存関係をインストールします。
import pandas as pd import matplotlib.pyplot as plt import warnings from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn import tree
- Python スクリプトまたは Jupyter ノートブックを実行してモデルをトレーニングし、デシジョン ツリーを視覚化します。
以上が顧客離れを予測するためのデシジョン ツリー分類子の例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

Dreamweaver Mac版
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
