検索
PyTorch の EMNISTDec 10, 2024 am 12:33 AM

コーヒー買ってきて☕

*私の投稿では EMNIST について説明しています。

EMNIST() は、以下に示すように EMNIST データセットを使用できます。

*メモ:

  • 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
  • 2番目の引数はsplit(Required-Type:str)です。 ※「byclass」、「bymerge」、「balances」、「letters」、「digital」、「mnist」が設定可能です。
  • train 引数があります (Optional-Default:False-Type:float): *メモ:
    • split="byclass"とsplit="byclass"の場合、Trueの場合はトレーニングデータ(697,932枚)が使用され、Falseの場合はテストデータ(116,323枚)が使用されます。
    • split="framed" の場合、True の場合はトレーニング データ (112,800 画像) が使用され、False の場合はテスト データ (188,00 画像) が使用されます。
    • split="letters" の場合、True の場合はトレーニング データ (124,800 画像) が使用され、False の場合はテスト データ (20,800 画像) が使用されます。
    • split="digits" の場合、True の場合はトレーニングデータ (240,000 画像) が使用され、False の場合はテストデータ (40,000 画像) が使用されます。
    • split="mnist" の場合、True の場合はトレーニング データ (60,000 画像) が使用され、False の場合はテスト データ (10,000 画像) が使用されます。
  • 変換引数(Optional-Default:None-Type:callable)があります。
  • target_transform引数(Optional-Default:None-Type:callable)があります。
  • ダウンロード引数があります(Optional-Default:False-Type:bool): *メモ:
    • True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
    • これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
    • これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
    • データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
    • ここからデータセットを手動でダウンロードして抽出できます。データ/EMNIST/生/.
  • デフォルトでは画像が反転して反時計回りに90度回転してしまうバグがあるため、変換する必要があります。
from torchvision.datasets import EMNIST

train_data = EMNIST(
    root="data",
    split="byclass"
)

train_data = EMNIST(
    root="data",
    split="byclass",
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

test_data = EMNIST(
    root="data",
    split="byclass",
    train=False
)

len(train_data), len(test_data)
# 697932 116323

train_data
# Dataset EMNIST
#     Number of datapoints: 697932
#     Root location: data
#     Split: Train

train_data.root
# 'data'

train_data.split
# 'byclass'

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method emnist.download of dataset emnist number datapoints: root location: data split: train>

train_data[0]
# (<pil.image.image image mode="L" size="28x28">, 35)

train_data[1]
# (<pil.image.image image mode="L" size="28x28">, 36)

train_data[2]
# (<pil.image.image image mode="L" size="28x28">, 6)

train_data[3]
# (<pil.image.image image mode="L" size="28x28">, 3)

train_data[4]
# (<pil.image.image image mode="L" size="28x28">, 22)

train_data.classes
# ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
#  'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
#  'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
#  'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
#  'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
</pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import EMNIST

train_data = EMNIST(
    root="data",
    split="byclass",
    train=True
)

test_data = EMNIST(
    root="data",
    split="byclass",
    train=False
)

import matplotlib.pyplot as plt

def show_images(data):
    plt.figure(figsize=(12, 2))
    col = 5
    for i, (image, label) in enumerate(data, 1):
        plt.subplot(1, col, i)
        plt.title(label)
        plt.imshow(image)
        if i == col:
            break
    plt.show()

show_images(data=train_data)
show_images(data=test_data)

EMNIST in PyTorch

from torchvision.datasets import EMNIST
from torchvision.transforms import v2

train_data = EMNIST(
    root="data",
    split="byclass",
    train=True,
    transform=v2.Compose([
        v2.RandomHorizontalFlip(p=1.0),
        v2.RandomRotation(degrees=(90, 90))
    ])
)

test_data = EMNIST(
    root="data",
    split="byclass",
    train=False,
    transform=v2.Compose([
        v2.RandomHorizontalFlip(p=1.0),
        v2.RandomRotation(degrees=(90, 90))
    ])
)

import matplotlib.pyplot as plt

def show_images(data):
    plt.figure(figsize=(12, 2))
    col = 5
    for i, (image, label) in enumerate(data, 1):
        plt.subplot(1, col, i)
        plt.title(label)
        plt.imshow(image)
        if i == col:
            break
    plt.show()

show_images(data=train_data)
show_images(data=test_data)

EMNIST in PyTorch

以上がPyTorch の EMNISTの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

Pythonの数学モジュール:統計Pythonの数学モジュール:統計Mar 09, 2025 am 11:40 AM

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

Pythonオブジェクトのシリアル化と脱介入:パート1Pythonオブジェクトのシリアル化と脱介入:パート1Mar 08, 2025 am 09:39 AM

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

美しいスープでPythonでWebページを削る:検索とDOMの変更美しいスープでPythonでWebページを削る:検索とDOMの変更Mar 08, 2025 am 10:36 AM

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

人気のあるPythonライブラリとその用途は何ですか?人気のあるPythonライブラリとその用途は何ですか?Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Mar 10, 2025 pm 06:48 PM

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール