ホームページ >バックエンド開発 >Python チュートリアル >PyTorch の KMNIST
コーヒー買ってきて☕
*私の投稿では KMNIST について説明しています。
KMNIST() は、以下に示すように KMNIST データセットを使用できます。
*メモ:
from torchvision.datasets import KMNIST train_data = KMNIST( root="data" ) train_data = KMNIST( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = KMNIST( root="data", train=False ) len(train_data), len(test_data) # (60000, 10000) train_data # Dataset KMNIST # Number of datapoints: 60000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method mnist.download of dataset kmnist number datapoints: root location: data split: train> train_data[0] # (<pil.image.image image mode="L" size="28x28">, 8) train_data[1] # (<pil.image.image image mode="L" size="28x28">, 7) train_data[2] # (<pil.image.image image mode="L" size="28x28">, 0) train_data[3] # (<pil.image.image image mode="L" size="28x28">, 1) train_data[4] # (<pil.image.image image mode="L" size="28x28">, 4) train_data.classes # ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo'] </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import KMNIST train_data = KMNIST( root="data", train=True ) test_data = KMNIST( root="data", train=False ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
以上がPyTorch の KMNISTの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。