検索
ホームページバックエンド開発Python チュートリアルPandas GroupBy.agg() を使用して同じ列で複数の集計を実行するにはどうすればよいですか?

How Can I Perform Multiple Aggregations on the Same Column Using Pandas GroupBy.agg()?

Pandas GroupBy.agg() を使用した同じ列上の複数の集計

pandas では、GroupBy.agg() を使用して便利な集計を行うことができます。各列に関数を適用してデータを作成します。ただし、同じ列に異なる関数を適用する場合は、agg() を複数回呼び出す必要があります。

従来の (間違った) アプローチ:

直感的に簡単なアプローチは次のとおりです。 be:

df.groupby("dummy").agg({
    "returns": f1, 
    "returns": f2
})

残念ながら、重複によりエラーが発生しますkey.

解決策:

agg() は辞書を必要とするため、簡単な解決策は、列名と関数のリストを含む辞書を作成することです。

df.groupby("dummy").agg({
    "returns": [f1, f2]
})

これにより、両方の集計の出力を含むマルチインデックス DataFrame が生成されます。

例:

次のデータフレームを考えます:

import pandas as pd
import datetime as dt
import numpy as np

pd.np.random.seed(0)
df = pd.DataFrame({
    "date": [dt.date(2012, x, 1) for x in range(1, 11)],
    "returns": 0.05 * np.random.randn(10),
    "dummy": np.repeat(1, 10)
})

平均と合計の両方を「returns」列に適用するには:

df.groupby("dummy").agg({
    "returns": ["mean", "sum"]
})

これにより次のものが生成されます:

           returns          
           mean       sum
dummy                    
1      0.036901  0.369012

以上がPandas GroupBy.agg() を使用して同じ列で複数の集計を実行するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonリストに要素をどのように追加しますか?Pythonリストに要素をどのように追加しますか?May 04, 2025 am 12:17 AM

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

Pythonリストをどのように作成しますか?例を挙げてください。Pythonリストをどのように作成しますか?例を挙げてください。May 04, 2025 am 12:16 AM

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。May 04, 2025 am 12:11 AM

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

Pythonアレイをどのように作成しますか?例を挙げてください。Pythonアレイをどのように作成しますか?例を挙げてください。May 04, 2025 am 12:10 AM

pythonarraysarasarecreatedusingthearraymodule、notbuilt-inlikelists.1)importthearraymodule.2)specifytheTypecode、emg。、 'i'forintegers.3)Arraysofferbettermemoreefficiency forhomogeneousdatabutlasefutablethanlists。

Shebangラインを使用してPythonインタープリターを指定するための選択肢は何ですか?Shebangラインを使用してPythonインタープリターを指定するための選択肢は何ですか?May 04, 2025 am 12:07 AM

Shebangラインに加えて、Pythonインタープリターを指定するには多くの方法があります。1。コマンドラインから直接Pythonコマンドを使用します。 2。バッチファイルまたはシェルスクリプトを使用します。 3. makeやcmakeなどのビルドツールを使用します。 4. Invokeなどのタスクランナーを使用します。各方法には利点と短所があり、プロジェクトのニーズに合った方法を選択することが重要です。

リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?May 03, 2025 am 12:11 AM

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。May 03, 2025 am 12:10 AM

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

Pythonアレイ内の要素のデータ型をどのように指定しますか?Pythonアレイ内の要素のデータ型をどのように指定しますか?May 03, 2025 am 12:06 AM

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン