検索
ホームページバックエンド開発Python チュートリアルPandas で CROSS JOIN を効率的に実行するにはどうすればよいですか?

How to Efficiently Perform a CROSS JOIN in Pandas?

Pandas を使用したパフォーマンスクロス結合 (CROSS JOIN)

この投稿では、デカルト積 (CROSS) を実行するための最も効率的な方法を検討します。 Pandas での JOIN) 操作。

ベースライン メソッド:一時キー列

一般的なアプローチでは、一時キー列を両方の DataFrame に割り当て、そのキーに対して多対多結合を実行して、キー列を削除します。

left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})

def cartesian_product_basic(left, right):
    return (
       left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))

cartesian_product_basic(left, right)

NumPy ベースの実装

大規模な環境でのパフォーマンス向上のためデータセットの場合、NumPy のデカルト積の実装を活用します。

import numpy as np

def cartesian_product(*arrays):
    la = len(arrays)
    dtype = np.result_type(*arrays)
    arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
    for i, a in enumerate(np.ix_(*arrays)):
        arr[...,i] = a
    return arr.reshape(-1, la)  

非一意のインデックス付きデータフレームへの一般化

このアプローチを拡張して、非固有のインデックス付きデータフレームを処理できます。個性的インデックス:

def cartesian_product_generalized(left, right):
    la, lb = len(left), len(right)
    idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
    return pd.DataFrame(
        np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))

2 つの DataFrame の簡略化された実装

2 つの DataFrame のみを扱う場合、np.broadcast_arrays を利用したより単純な手法で同等のパフォーマンスを達成できます。

def cartesian_product_simplified(left, right):
    la, lb = len(left), len(right)
    ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])

    return pd.DataFrame(
        np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))

パフォーマンス比較

これらのメソッドのベンチマークを行うと、NumPy ベースの実装が、特に大規模なデータセットに対して最速のパフォーマンスを提供することがわかります。

[パフォーマンス比較チャートの画像]

さらに読む

さらに詳しく読むにはPandas のマージ操作については、次のトピックを参照してください:

  • [マージの基本](https://pbpython.com/pandas-merging-101-cheat-sheet.html)
  • [インデックスベース結合](https://pbpython.com/pandas-merging-101-join-indexes.html)
  • [複数の DataFrame への一般化](https://pbpython.com/pandas-merging-on- multiple-dataframes.html)

以上がPandas で CROSS JOIN を効率的に実行するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

Python vs. C:開発者の長所と短所Python vs. C:開発者の長所と短所Apr 17, 2025 am 12:04 AM

Pythonは迅速な開発とデータ処理に適していますが、Cは高性能および基礎となる制御に適しています。 1)Pythonは、簡潔な構文を備えた使いやすく、データサイエンスやWeb開発に適しています。 2)Cは高性能で正確な制御を持ち、ゲームやシステムのプログラミングでよく使用されます。

Python:時間のコミットメントと学習ペースPython:時間のコミットメントと学習ペースApr 17, 2025 am 12:03 AM

Pythonを学ぶのに必要な時間は、人によって異なり、主に以前のプログラミングの経験、学習の動機付け、学習リソースと方法、学習リズムの影響を受けます。現実的な学習目標を設定し、実用的なプロジェクトを通じて最善を尽くします。

Python:自動化、スクリプト、およびタスク管理Python:自動化、スクリプト、およびタスク管理Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター