画像分類に OpenCV と SVM を使用する
OpenCV で SVM を使用して画像を読み取り、トレーニング用の特徴を抽出し、新しい画像をテストすることは、複雑なタスク。この記事は、次の手順についての包括的なガイドを提供することを目的としています。
画像の読み取り
OpenCV で画像を読み取るには、imread() 関数を使用できます。
Mat img = imread("image.jpg");
特徴の抽出
抽出するには画像から特徴を抽出するには、次のようなさまざまなテクニックを使用できます。
- 色変換: 画像を異なる色空間 (グレースケール、HSV など) に変換して、さまざまな側面をキャプチャします。 .
- ヒストグラム: 色の強度のヒストグラムを計算します。
- PCA 分析: 主成分分析を適用して次元を削減します。
SVM のトレーニング
- トレーニングの準備データ: 指定された回答の説明に従って、すべての画像を 1D 行列に変換します。
- トレーニング行列の構築: 1D 行列のデータを 2D トレーニング行列の行として配置します。
- ラベル マトリックスの作成: データにラベルを割り当てる(例: 非曲線の場合は -1、曲線の場合は 1)。
- SVM パラメータの設定: SVM タイプ、カーネル、およびその他のパラメータを定義します。
- SVM のトレーニング: トレーニング データを使用して SVM をトレーニングし、 label.
新しい画像のテスト
- テスト画像の読み取り: imread() を使用してテスト画像を読み込みます。
- 1D マトリックスに変換: 変換画像を 1D 行列に変換します。
- 予測ラベル: 行列をトレーニング済み SVM に渡して、予測 (曲線または非曲線など) を取得します。
ラベル付けトレーニング行列
画像内のピクセルが異なるクラスに属している場合は、各行の支配的なクラスに基づいてトレーニング行列の行にラベルを割り当てることができます。たとえば、2x5 行列に次のものが含まれている場合:
[1,1 1,2 1,3 1,4 1,5] [2,1 2,2 2,3 2,4 2,5]
ピクセル {1,1}、{1,4} が曲線に属している場合、最初の行に 1 のラベルを割り当て、最初の行に 0 のラベルを割り当てることができます。 2 番目の行。各行のピクセルの大部分がそのクラスに属します。
以上がOpenCV と SVM を効果的な画像分類にどのように使用できますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

cインタビューでは、スマートポインターは、メモリを管理し、メモリリークを減らすのに役立つ重要なツールです。 1)std :: siquire_ptrは、リソースが自動的にリリースされることを確認するための独占的な所有権を提供します。 2)std :: shared_ptrは共有所有権に使用され、マルチリファレンスシナリオに適しています。 3)std :: weak_ptrは、循環参照を回避し、安全なリソース管理を確保することができます。

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。

Cは、効率的で柔軟で強力な性質のため、最新のプログラミングで依然として重要です。 1)Cシステムプログラミング、ゲーム開発、組み込みシステムに適したオブジェクト指向プログラミングをサポートします。 2)多型はCのハイライトであり、基本クラスのポインターまたはコードの柔軟性とスケーラビリティを強化するための参照を介して派生クラスのメソッドを呼び出すことができます。

C#とCのパフォーマンスの違いは、主に実行速度とリソース管理に反映されます。1)Cは通常、ハードウェアに近く、ガベージコレクションなどの追加のオーバーヘッドがないため、数値計算と文字列操作でより良いパフォーマンスを発揮します。 2)C#はマルチスレッドプログラミングでより簡潔ですが、そのパフォーマンスはCよりもわずかに劣っています。 3)プロジェクトの要件とチームテクノロジースタックに基づいて、どの言語を選択するかを決定する必要があります。

c isnotdying; it'sevolving.1)c relelevantdueToitsversitileSileSixivisityinperformance-criticalApplications.2)thelanguageSlikeModulesandCoroutoUtoimveUsablive.3)despiteChallen

Cは、現代世界で広く使用され、重要です。 1)ゲーム開発において、Cは、非現実的や統一など、その高性能と多型に広く使用されています。 2)金融取引システムでは、Cの低レイテンシと高スループットが最初の選択となり、高周波取引とリアルタイムのデータ分析に適しています。

C:tinyxml-2、pugixml、xerces-c、およびrapidxmlには、一般的に使用される4つのXMLライブラリがあります。 1.TinyXML-2は、リソースが限られている環境、軽量ではあるが機能が限られていることに適しています。 2。PUGIXMLは高速で、複雑なXML構造に適したXPathクエリをサポートしています。 3.Xerces-Cは強力で、DOMとSAXの解像度をサポートし、複雑な処理に適しています。 4。RapidXMLはパフォーマンスと分割に非常に高速に焦点を当てていますが、XPathクエリをサポートしていません。

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 中国語版
中国語版、とても使いやすい

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ホットトピック









