Python ループの並列化による効率の向上
Python では、ループの並列化により、CPU バウンドのタスクのパフォーマンスを大幅に向上させることができます。 calc_stuff 関数を使用して値を計算し、その結果を別のリストに蓄積する提供されたループを並列化するには、2 つの効果的なアプローチがあります。
方法 1: マルチプロセッシング
Due Python の Global Interpreter Lock (GIL) では、複数のスレッドを使用しても、CPU バウンドのタスクには利点が得られません。代わりに、マルチプロセッシングの方が適切なオプションです。
マルチプロセッシング モジュールを使用すると、以下に示すように、複数のワーカー プロセスを含むプロセス プールを作成できます。
pool = multiprocessing.Pool(4) # Create a pool with 4 worker processes out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))
マップ関数は各アイテムを送信します。ワーカー プロセスへの範囲反復子で、返された結果を収集し、それらを out1、out2、および out3 に解凍します。 lists.
方法 2: Concurrent.futures Python 3.2
ループを並列化するもう 1 つの便利なオプションは、Concurrent.futures モジュールを使用することです。これは、使用するために最適化されたインターフェイスを提供します。スレッドとプロセス プール:
with concurrent.futures.ProcessPoolExecutor() as pool: out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))
このアプローチでは、内部でプロセス プールを使用します。マルチプロセッシング方式と同様に動作します。
どちらの方式でも、異なる入力で calc_stuff 関数を並列実行できるため、CPU 負荷の高いループの実行時間が短縮されます。
以上が効率を向上させるために Python ループを並列化するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

WebStorm Mac版
便利なJavaScript開発ツール
