NumPy 配列内の複数の最大値のインデックスの取得
NumPy は、配列内の最大値のインデックスを取得するための便利な np.argmax 関数を提供します。配列。しかし、上位 N 個の最大値のインデックスを見つける必要がある場合はどうすればよいでしょうか?
解決策
最近の NumPy バージョン (1.8 以降) では、このための argpartition 関数が導入されています。目的。上位 N 個の要素のインデックスを取得するには、次の手順に従います。
import numpy as np # Original array a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0]) # Find indices of top N elements (N = 4 in this case) ind = np.argpartition(a, -4)[-4:] # Extract top N elements top4 = a[ind] # Print indices and top N elements print("Indices:", ind) print("Top 4 elements:", top4)
説明
np.argpartition は配列を部分的にソートし、2 つのサブパーティションに分割します。配列: 最初のサブ配列には上位 N 個の要素 (この場合は最大の 4 個の要素) が含まれ、2 番目のサブ配列には残りの要素が含まれます。要素。返された配列 ind には、最初のサブ配列の要素のインデックスが含まれます。
この例の出力は次のようになります。
Indices: [1 5 8 0] Top 4 elements: [4 9 6 9]
Optimizations
ソートされたインデックスも必要な場合は、それらをソートできます個別に:
sorted_ind = ind[np.argsort(a[ind])]
このステップには O(k log k) 時間がかかります。ここで、k は取得する上位要素の数です。全体として、このアプローチの時間計算量は O(n k log k) であり、大規模な配列や中程度の値の k に対して効率的です。
以上がNumPy 配列内の複数の最大値のインデックスを効率的に見つけるにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

heouttemptemptostoreavure ofthewrongdatatypeinapythonarray、yure counteractypeerror.thisduetothearraymodule'sstricttypeeencultionyを使用します

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

theScriptisrunningwithwrongthonversionduetorectRectDefaultEntertersettings.tofixthis:1)CheckthedededefaultHaulthonsionsingpython - versionorpython3-- version.2)usevirtualenvironmentsbycreatingonewiththon3.9-mvenvmyenv、andverixe

PythonArraysSupportVariousoperations:1)SlicingExtractsSubsets、2)Appending/ExtendingAdddesements、3)inSertingSelementSatspecificpositions、4)remvingingDeletesements、5)sorting/verversingsorder、and6)listenionsionsionsionsionscreatenewlistsebasedexistin

numpyarraysAressertialentionsionceivationsefirication-efficientnumericalcomputations andDatamanipulation.theyarecrucialindatascience、mashineelearning、物理学、エンジニアリング、および促進可能性への適用性、scaledatiencyを効率的に、forexample、infinancialanalyyy

UseanArray.ArrayOverAlistinPythonは、Performance-criticalCode.1)homogeneousdata:araysavememorywithpedelements.2)Performance-criticalcode:Araysofterbetterbetterfornumerumerumericaleperations.3)interf

いいえ、notallistoperationSaresuptedbyarrays、andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorintorintorinsertizizing、whosimpactsporformance.2)リスト


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









