cv::inRange (OpenCV) を使用した色検出のための正しい HSV 境界の正しい上限と下限の選択
OpenCV の cv::inRange 関数では、HSV (色相、彩度、値) 色空間。これにより、正確な色検出が保証され、効率的なセグメンテーションが可能になります。
問題:
コーヒー缶のオレンジ色の蓋を含む画像を考えてみましょう。 gcolor2 ユーティリティを使用して取得した、蓋の中央の HSV 値は (22, 59, 100) です。 min = (18, 40, 90) および max = (27, 255, 255) として定義された初期境界を使用すると、予期しない検出結果が発生しました。
解決策:
問題 1: HSV 範囲の変動
異なる多くの場合、アプリケーションでは HSV 値に異なるスケールが使用されます。たとえば、GIMP は H: 0 ~ 360、S: 0 ~ 100、V: 0 ~ 100 のスケールを使用しますが、OpenCV は H: 0 ~ 179、S: 0 ~ 255、V: 0 ~ 255 を使用します。この場合、GIMP の色相値 22 は、値の半分を取得して OpenCV の 11 に変換される必要があります。したがって、修正された境界は (5, 50, 50) - (15, 255, 255) になります。
問題 2: 色空間の互換性
OpenCV は BGR を採用しています(青-緑-赤) カラー形式。RGB ではありません。互換性を確保するには、RGB を HSV に変換するコードを次のように変更する必要があります:
cv.CvtColor(frame, frameHSV, cv.CV_BGR2HSV)
更新コード:
import cv in_image = 'kaffee.png' out_image = 'kaffee_out.png' out_image_thr = 'kaffee_thr.png' ORANGE_MIN = cv.Scalar(5, 50, 50) ORANGE_MAX = cv.Scalar(15, 255, 255) COLOR_MIN = ORANGE_MIN COLOR_MAX = ORANGE_MAX def test1(): frame = cv.LoadImage(in_image) frameHSV = cv.CreateImage(cv.GetSize(frame), 8, 3) cv.CvtColor(frame, frameHSV, cv.CV_BGR2HSV) frame_threshed = cv.CreateImage(cv.GetSize(frameHSV), 8, 1) cv.InRangeS(frameHSV, COLOR_MIN, COLOR_MAX, frame_threshed) cv.SaveImage(out_image_thr, frame_threshed) if __name__ == '__main__': test1()
結果:
更新されたコードを実行すると、オレンジのより正確なセグメンテーションが得られます。蓋。
注:
背景の色合いが似ているため、小さな誤検出が発生する可能性があります。これに対処するには、輪郭分析などのさらなる処理を適用して、まぶたに対応する最大の輪郭を分離できます。
以上がOpenCV で正確な色検出を行うために正しい HSV の上限と下限を選択するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
