PDF が英語でフォントが埋め込まれていない場合、PDF からテキストを抽出するのは通常簡単です。ただし、これらの前提が取り除かれると、pdfminer や pdfplumber などの基本的な Python ライブラリを使用するのが難しくなります。先月、私はグジャラート語の PDF からテキストを抽出し、名前、住所、都市などのデータ フィールドを JSON 形式にインポートするという任務を負いました。
フォントが PDF 自体に埋め込まれている場合、単純なコピー&ペーストは機能せず、pdfplumber を使用すると、判読できないジャンク テキストが返されます。したがって、各 PDF ページを画像に変換し、pytesseract ライブラリを使用して OCR を適用して、単にページを読み取るのではなく「スキャン」する必要がありました。このチュートリアルでは、その方法を説明します。
必要なもの
- pdfplumber (Python ライブラリ)
- pdf2image (Python ライブラリ)
- pytesseract (Python ライブラリ)
- tesseract-ocr
以下に示すように、pip コマンドを使用して Python ライブラリをインストールできます。 Tesseract-OCR の場合は、公式サイトからソフトウェアをダウンロードしてインストールします。 pytesseract は、tesseract ソフトウェアの単なるラッパーです。
pip install pdfplumber pip install pdf2image pip install pytesseract
PDFページを画像に変換する
最初のステップは、PDF ページを画像に変換することです。この extract_text_from_pdf() 関数はまさにそれを行います。PDF パスと page_num (インデックスはゼロ) をパラメータとして渡します。わかりやすくするために最初にページを白黒に変換していることに注意してください。これはオプションです。
# Extract text from a specific page of a PDF def extract_text_from_pdf(pdf_path, page_num): # Use pdfplumber to open the PDF pdf = pdfplumber.open(pdf_path) print(f"extracting page {page_num}..") page = pdf.pages[page_num] images = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1) image = images[0] # Convert to black and white bw_image = convert_to_bw(image) # Save the B&W image for debugging (optional) #bw_image.save("bw_page.png") # Perform OCR on the B&W image e_text = ocr_image(bw_image) open('out.txt', 'w', encoding='utf-8').write(e_text) #print("output written to file.") try: process_text(page_num, e_text) except Exception as e: print("Error occurred:", e) print("done..") # Convert image to black and white def convert_to_bw(image): # Convert to grayscale gray = image.convert('L') # Apply threshold to convert to pure black and white bw = gray.point(lambda x: 0 if x <p>ocr_image() 関数は、pytesseract を使用して、OCR を通じて画像からテキストを抽出します。 --oem や --psm などの技術パラメータは画像の処理方法を制御し、-l guj eng パラメータは読み取られる言語を設定します。この PDF には英語のテキストが含まれているため、guj eng を使用しました。</p> <h2> テキストを処理する </h2> <p>OCR を使用してテキストをインポートしたら、必要な形式で解析できます。これは、pdfplumber や pypdf2 などの他の PDF ライブラリと同様に機能します。<br> </p> <pre class="brush:php;toolbar:false">nums = ['0', '૧', '૨', '૩', '૪', '૫', '૬', '૭', '૮', '૯'] def process_text(page_num, e_text): obj = None last_surname = None last_kramank = None print(f"processing page {page_num}..") for line in e_text.splitlines(): line = line.replace('|', '').replace('[', '').replace(']', '') parts = [word for word in line.split(' ') if word] if len(parts) == 0: continue new_rec = True for char in parts[0]: if char not in nums: new_rec = False break if len(parts) = 2: # numbered line if len(parts) <p>すべての PDF には、考慮する必要がある独自のニュアンスがあります。この場合、最初のフィールドの新しいシリアル番号 (0૧ や 0૨ など) は、後続のフィールド (姓) が変更されたときに新しいグループを示しました。</p> <p>pytesseract は、IT テクノロジーの進化と進歩の証です。約 10 年前、適度な構成の PC またはラップトップで、英語以外の言語で OCR を使用して PDF 画像を読んだり解析したりすることは、ほぼ不可能でした。これはまさに進歩です!コーディングを楽しんでください。以下のコメントで仕上がり具合を教えてください。</p><h2> 参考文献 </h2>
- Windows への Tesseract のインストール
- pytesseract OCR を使用して画像からテキストを認識します
- Windows 10 で英語以外の言語のテキスト検出をサポートするように pytesseract を構成するにはどうすればよいですか?
以上が埋め込みフォント PDF からテキストのロックを解除する: pytesseract OCR チュートリアルの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonは、インターネットからファイルをダウンロードするさまざまな方法を提供します。これは、urllibパッケージまたはリクエストライブラリを使用してHTTPを介してダウンロードできます。このチュートリアルでは、これらのライブラリを使用してPythonからURLからファイルをダウンロードする方法を説明します。 ライブラリをリクエストします リクエストは、Pythonで最も人気のあるライブラリの1つです。クエリ文字列をURLに手動で追加したり、POSTデータのエンコードをフォームに追加せずに、HTTP/1.1リクエストを送信できます。 リクエストライブラリは、以下を含む多くの機能を実行できます フォームデータを追加します マルチパートファイルを追加します Python応答データにアクセスします リクエストを行います 頭

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

自然言語処理(NLP)は、人間の言語の自動または半自動処理です。 NLPは言語学と密接に関連しており、認知科学、心理学、生理学、数学の研究とのリンクがあります。コンピューターサイエンスで

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
