cv::inRange (OpenCV) を使用した色検出のための最適な HSV 境界の選択
画像処理では、HSV 色空間が頻繁に使用されます。色検出用。ターゲットの色を正確に識別するには、適切な HSV の上限と下限を選択することが重要です。この質問では、コーヒー缶のオレンジ色の蓋を含む画像の選択プロセスを調べます。
蓋の推定 HSV 中心値 (22, 59, 100) が指定されているにもかかわらず、最初の試行では境界 (18) が使用されます。 、40、90) および (27、255、255) では満足のいく結果が得られませんでした。これに対処するには、HSV スケールと画像形式の潜在的な問題を考慮する必要があります。
問題 1: HSV スケールの差異
異なるアプリケーションでは、異なる HSV スケールが使用される場合があります。 GIMP は H = 0 ~ 360、S = 0 ~ 100、V = 0 ~ 100 を使用しますが、OpenCV は H: 0 ~ 179、S: 0 ~ 255、V: 0 ~ 255 を採用します。この場合、GIMP の色相値 (22) を OpenCV のスケールに合わせて半分にする必要があり、その結果、範囲は (5, 50, 50) - (15, 255, 255) になります。
問題2: 画像形式の変換
OpenCV は、RGB ではなく BGR 形式の画像を処理します。したがって、色変換ラインを cv.CvtColor(frame, FrameHSV, cv.CV_BGR2HSV) に修正する必要があります。これにより、HSV 境界検出の前に画像が正しく変換されることが保証されます。
これらの調整を組み込むことで、より有望な結果が得られます。
[改善された検出の画像]
ただし出力は完璧ではありませんが、オレンジ色の蓋の検出が向上しています。誤検出は、まぶたに対応する最大の輪郭を選択することで最小限に抑えることができます。
結論
適切な HSV 境界を選択するには、スケールの差異と適切な画像形式の変換を考慮する必要があります。これらの問題に対処することで、OpenCV の cv::inRange を使用して色検出の精度を向上させることができます。
以上がOpenCV で正確な色検出のために HSV 境界を最適化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonリストスライスの基本的な構文はリストです[start:stop:step]。 1.STARTは最初の要素インデックス、2。ストップは除外された最初の要素インデックスであり、3.ステップは要素間のステップサイズを決定します。スライスは、データを抽出するためだけでなく、リストを変更および反転させるためにも使用されます。

ListSoutPerformArraysIn:1)ダイナミシジョンアンドフレーケンティオン/削除、2)ストーリングヘテロゼンダタ、および3)メモリ効率の装飾、ButmayhaveslightPerformancostsinceNASOPERATIONS。

toconvertapythonarraytoalist、usetheList()constructororageneratorexpression.1)importhearraymoduleandcreateanarray.2)useList(arr)または[xforxinarr] toconvertoalistは、largedatatessを変えることを伴うものです。

choosearraysoverlistsinperbetterperformance andmemoryeficiencyspecificscenarios.1)largeNumericaldatasets:Araysreducememoryusage.2)パフォーマンス - クリティカル操作:ArraysOfferSpeedBoostsfortsfortsclikeappendedoring.3)タイプリー:Arrayesenforc

Pythonでは、ループに使用し、列挙し、包括的なリストを通過することができます。 Javaでは、従来のループを使用し、ループを強化してアレイを通過することができます。 1。Pythonリストトラバーサル方法は、ループ、列挙、およびリスト理解のためのものです。 2。Javaアレイトラバーサル法には、従来のループとループ用の強化が含まれます。

この記事では、バージョン3.10で導入されたPythonの新しい「マッチ」ステートメントについて説明します。これは、他の言語のスイッチステートメントに相当するものです。コードの読みやすさを向上させ、従来のif-elif-elよりもパフォーマンスの利点を提供します

Python 3.11の例外グループは、複数の例外を同時に処理することで、同時シナリオと複雑な操作でエラー管理を改善します。

Pythonの関数注釈は、タイプチェック、ドキュメント、およびIDEサポートの関数にメタデータを追加します。それらはコードの読みやすさ、メンテナンスを強化し、API開発、データサイエンス、ライブラリの作成において重要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

WebStorm Mac版
便利なJavaScript開発ツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ホットトピック









