検索
ホームページバックエンド開発Python チュートリアルFastAPI で生の HTTP リクエストとレスポンスの本文を効率的に記録するにはどうすればよいですか?

How to Efficiently Log Raw HTTP Request and Response Bodies in FastAPI?

Python FastAPI で生の HTTP リクエストとレスポンスを記録する方法

概要:

Python FastAPI ベースの Web サービスの監査要件を満たすには、生の JSON を保存する必要があります。特定のルート上のリクエストとレスポンスの両方の本文。このガイドでは、約 1MB の本体サイズを扱う場合でも、応答時間に顕著な影響を与えることなくこれを達成するための 2 つの実行可能なソリューションを紹介します。

オプション 1: ミドルウェアの使用

ミドルウェアの仕組み:

ミドルウェアはゲートキーパーとして機能しますアプリケーションに入力されるリクエスト用。これにより、エンドポイント処理の前にリクエストを処理し、クライアントに返す前に応答を処理できるようになります。関数で @app.middleware デコレータを使用してミドルウェアを確立できます:

リクエストおよびレスポンス本文の管理:

ミドルウェア内のストリームからリクエスト本文にアクセスするには ( request.body() または request.stream()) を使用する場合は、リクエストとレスポンスのサイクルの後半で使用できるようにする必要があります。リンクされた投稿では、この回避策について説明していますが、FastAPI バージョン 0.108.0 以降では不要になりました。

応答本文については、この投稿で概要を説明した手法を複製して、本文を直接消費して返し、ステータスを提供できます。コード、ヘッダー、メディア タイプと元の応答。

ロギングデータ:

BackgroundTask を使用してデータをログに記録し、応答完了後の実行を保証します。これにより、クライアントのログ記録タスクの待機がなくなり、応答時間の整合性が維持されます。

オプション 2: カスタム APIRoute の実装

カスタム APIRoute:

このオプションには、処理前にリクエストとレスポンスの本文を操作するためのカスタム APIRoute クラスの作成が含まれますエンドポイント、またはクライアントに結果を返す。専用の APIRouter:

考慮事項:

メモリ制約:

どちらのアプローチでも、使用可能なサーバー RAM を超える大規模なリクエストまたはレスポンスボディに関する問題が発生する可能性があります。大きな応答をストリーミングすると、クライアント側の遅延やリバース プロキシ エラーが発生する可能性があります。潜在的な問題を回避するには、ミドルウェアの使用を特定のルートに制限するか、大量のストリーミング応答を持つエンドポイントを除外します。

コード例 (オプション 1):

from fastapi import FastAPI, APIRouter, Response, Request
from starlette.background import BackgroundTask
from fastapi.routing import APIRoute
from starlette.types import Message
from typing import Dict, Any
import logging


app = FastAPI()
logging.basicConfig(filename='info.log', level=logging.DEBUG)


def log_info(req_body, res_body):
    logging.info(req_body)
    logging.info(res_body)



# Not required for FastAPI >= 0.108.0
async def set_body(request: Request, body: bytes):
    async def receive() -> Message:
        return {'type': 'http.request', 'body': body}
    request._receive = receive


@app.middleware('http')
async def some_middleware(request: Request, call_next):
    req_body = await request.body()
    await set_body(request, req_body)  # Not required for FastAPI >= 0.108.0
    response = await call_next(request)
    
    res_body = b''
    async for chunk in response.body_iterator:
        res_body += chunk
    
    task = BackgroundTask(log_info, req_body, res_body)
    return Response(content=res_body, status_code=response.status_code, 
        headers=dict(response.headers), media_type=response.media_type, background=task)


@app.post('/')
def main(payload: Dict[Any, Any]):
    return payload

例コード (オプション 2):

from fastapi import FastAPI, APIRouter, Response, Request
from starlette.background import BackgroundTask
from starlette.responses import StreamingResponse
from fastapi.routing import APIRoute
from starlette.types import Message
from typing import Callable, Dict, Any
import logging
import httpx


def log_info(req_body, res_body):
    logging.info(req_body)
    logging.info(res_body)

       
class LoggingRoute(APIRoute):
    def get_route_handler(self) -> Callable:
        original_route_handler = super().get_route_handler()

        async def custom_route_handler(request: Request) -> Response:
            req_body = await request.body()
            response = await original_route_handler(request)
            tasks = response.background
            
            if isinstance(response, StreamingResponse):
                res_body = b''
                async for item in response.body_iterator:
                    res_body += item
                  
                task = BackgroundTask(log_info, req_body, res_body)
                response = Response(content=res_body, status_code=response.status_code, 
                        headers=dict(response.headers), media_type=response.media_type)
            else:
                task = BackgroundTask(log_info, req_body, response.body)
            
            # Check if the original response had background tasks already attached to it
            if tasks:
                tasks.add_task(task)  # Add the new task to the tasks list
                response.background = tasks
            else:
                response.background = task
                
            return response
            
        return custom_route_handler


app = FastAPI()
router = APIRouter(route_class=LoggingRoute)
logging.basicConfig(filename='info.log', level=logging.DEBUG)


@router.post('/')
def main(payload: Dict[Any, Any]):
    return payload


@router.get('/video')
def get_video():
    url = 'https://storage.googleapis.com/gtv-videos-bucket/sample/ForBiggerBlazes.mp4'
    
    def gen():
        with httpx.stream('GET', url) as r:
            for chunk in r.iter_raw():
                yield chunk

    return StreamingResponse(gen(), media_type='video/mp4')


app.include_router(router)
これらのソリューションは以下を提供します応答時間に大きな影響を与えることなく、生の HTTP リクエストとレスポンスの本文を FastAPI に記録するための効率的な方法です。

以上がFastAPI で生の HTTP リクエストとレスポンスの本文を効率的に記録するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

Pythonのコンテキストで「配列」と「リスト」を定義します。Pythonのコンテキストで「配列」と「リスト」を定義します。Apr 24, 2025 pm 03:41 PM

Inpython、「リスト」は、「リスト」、自由主義的なもの、samememory効率が高く、均質な偶然の瞬間の想起された「アレイ」の「アレイ」の「アレイ」の均質な偶発的な想起されたものです

Pythonリストは可変ですか、それとも不変ですか? Pythonアレイはどうですか?Pythonリストは可変ですか、それとも不変ですか? Pythonアレイはどうですか?Apr 24, 2025 pm 03:37 PM

pythonlistsandarraysaraybothmutable.1)listsareflexibleandsupportheTeterdatabutarlessmemory-efficient.2)Arraysaremorememory-efficientiant forhomogeneousdative、ressivelessatile、ressing comerttytytypecodeusageodoavoiderorors。

Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、