Python FastAPI で生の HTTP リクエストとレスポンスを記録する方法
概要:
Python FastAPI ベースの Web サービスの監査要件を満たすには、生の JSON を保存する必要があります。特定のルート上のリクエストとレスポンスの両方の本文。このガイドでは、約 1MB の本体サイズを扱う場合でも、応答時間に顕著な影響を与えることなくこれを達成するための 2 つの実行可能なソリューションを紹介します。
オプション 1: ミドルウェアの使用
ミドルウェアの仕組み:
ミドルウェアはゲートキーパーとして機能しますアプリケーションに入力されるリクエスト用。これにより、エンドポイント処理の前にリクエストを処理し、クライアントに返す前に応答を処理できるようになります。関数で @app.middleware デコレータを使用してミドルウェアを確立できます:
リクエストおよびレスポンス本文の管理:
ミドルウェア内のストリームからリクエスト本文にアクセスするには ( request.body() または request.stream()) を使用する場合は、リクエストとレスポンスのサイクルの後半で使用できるようにする必要があります。リンクされた投稿では、この回避策について説明していますが、FastAPI バージョン 0.108.0 以降では不要になりました。
応答本文については、この投稿で概要を説明した手法を複製して、本文を直接消費して返し、ステータスを提供できます。コード、ヘッダー、メディア タイプと元の応答。
ロギングデータ:
BackgroundTask を使用してデータをログに記録し、応答完了後の実行を保証します。これにより、クライアントのログ記録タスクの待機がなくなり、応答時間の整合性が維持されます。
オプション 2: カスタム APIRoute の実装
カスタム APIRoute:
このオプションには、処理前にリクエストとレスポンスの本文を操作するためのカスタム APIRoute クラスの作成が含まれますエンドポイント、またはクライアントに結果を返す。専用の APIRouter:
考慮事項:
メモリ制約:
どちらのアプローチでも、使用可能なサーバー RAM を超える大規模なリクエストまたはレスポンスボディに関する問題が発生する可能性があります。大きな応答をストリーミングすると、クライアント側の遅延やリバース プロキシ エラーが発生する可能性があります。潜在的な問題を回避するには、ミドルウェアの使用を特定のルートに制限するか、大量のストリーミング応答を持つエンドポイントを除外します。コード例 (オプション 1):
from fastapi import FastAPI, APIRouter, Response, Request from starlette.background import BackgroundTask from fastapi.routing import APIRoute from starlette.types import Message from typing import Dict, Any import logging app = FastAPI() logging.basicConfig(filename='info.log', level=logging.DEBUG) def log_info(req_body, res_body): logging.info(req_body) logging.info(res_body) # Not required for FastAPI >= 0.108.0 async def set_body(request: Request, body: bytes): async def receive() -> Message: return {'type': 'http.request', 'body': body} request._receive = receive @app.middleware('http') async def some_middleware(request: Request, call_next): req_body = await request.body() await set_body(request, req_body) # Not required for FastAPI >= 0.108.0 response = await call_next(request) res_body = b'' async for chunk in response.body_iterator: res_body += chunk task = BackgroundTask(log_info, req_body, res_body) return Response(content=res_body, status_code=response.status_code, headers=dict(response.headers), media_type=response.media_type, background=task) @app.post('/') def main(payload: Dict[Any, Any]): return payload
例コード (オプション 2):
from fastapi import FastAPI, APIRouter, Response, Request from starlette.background import BackgroundTask from starlette.responses import StreamingResponse from fastapi.routing import APIRoute from starlette.types import Message from typing import Callable, Dict, Any import logging import httpx def log_info(req_body, res_body): logging.info(req_body) logging.info(res_body) class LoggingRoute(APIRoute): def get_route_handler(self) -> Callable: original_route_handler = super().get_route_handler() async def custom_route_handler(request: Request) -> Response: req_body = await request.body() response = await original_route_handler(request) tasks = response.background if isinstance(response, StreamingResponse): res_body = b'' async for item in response.body_iterator: res_body += item task = BackgroundTask(log_info, req_body, res_body) response = Response(content=res_body, status_code=response.status_code, headers=dict(response.headers), media_type=response.media_type) else: task = BackgroundTask(log_info, req_body, response.body) # Check if the original response had background tasks already attached to it if tasks: tasks.add_task(task) # Add the new task to the tasks list response.background = tasks else: response.background = task return response return custom_route_handler app = FastAPI() router = APIRouter(route_class=LoggingRoute) logging.basicConfig(filename='info.log', level=logging.DEBUG) @router.post('/') def main(payload: Dict[Any, Any]): return payload @router.get('/video') def get_video(): url = 'https://storage.googleapis.com/gtv-videos-bucket/sample/ForBiggerBlazes.mp4' def gen(): with httpx.stream('GET', url) as r: for chunk in r.iter_raw(): yield chunk return StreamingResponse(gen(), media_type='video/mp4') app.include_router(router)これらのソリューションは以下を提供します応答時間に大きな影響を与えることなく、生の HTTP リクエストとレスポンスの本文を FastAPI に記録するための効率的な方法です。
以上がFastAPI で生の HTTP リクエストとレスポンスの本文を効率的に記録するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

Inpython、「リスト」は、「リスト」、自由主義的なもの、samememory効率が高く、均質な偶然の瞬間の想起された「アレイ」の「アレイ」の「アレイ」の均質な偶発的な想起されたものです

pythonlistsandarraysaraybothmutable.1)listsareflexibleandsupportheTeterdatabutarlessmemory-efficient.2)Arraysaremorememory-efficientiant forhomogeneousdative、ressivelessatile、ressing comerttytytypecodeusageodoavoiderorors。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

メモ帳++7.3.1
使いやすく無料のコードエディター

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









