データの視覚化は、データを分析して表示するための最も強力なツールの 1 つです。 Seaborn は、Matplotlib 上に構築された Python ライブラリであり、有益で多様な視覚化を作成するための高レベルのインターフェイスを提供します。この記事では、適切な Seaborn プロットの選択、明確にするためのカスタマイズ、よくある落とし穴の回避について説明します。
適切なプロット タイプの選択が重要な理由
選択したプロットの種類は、データが洞察と情報をどのように効果的に表現するかに直接影響します。
散布図は、変数間の相関関係を明らかにします。
ヒートマップは、大規模な比較を簡素化します。
間違ったプロット タイプを使用すると誤解が生じる可能性があり、間違ったビジュアライゼーションを選択したためにデータからの洞察が埋もれ、決して明らかにされないことがあります。
Seaborn プロット カテゴリを理解する
Seaborn プロットは、関係、分布、および カテゴリの 3 つの主要カテゴリに分類されます。それぞれの選び方と使い方をご紹介します。
出典:https://seaborn.pydata.org/_images/function_overview_8_0.png
1. 関係プロット
関係プロットは、2 つの変数 (通常は数値) 間の関係を視覚化します。 Seaborn は、散布図と折れ線グラフという 2 つの主要なタイプの関係プロットを提供します。これらのプロットは therelplot() 関数を使用して作成できます。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
または次のように書くこともできます:
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
結果は同じです。
出典: seaborn ドキュメント
散布図には個々のデータ ポイントが表示されるため、パターンや相関関係を簡単に識別できます。一方、折れ線グラフは、時間の経過に伴う傾向やカテゴリ全体の傾向を示すのに最適です。
2. 分布図
変数の分布を理解することは、データの分析またはモデル化における重要な最初のステップです。分布プロットは、単一変数の広がりまたは分散を明らかにするように設計されています。これらの視覚化により、次のような重要な質問にすぐに答えることができます: データはどの範囲をカバーしていますか?その中心的な傾向は何でしょうか?データは特定の方向に偏っていますか?
関係プロットと同様に、分布プロットは displot() 関数を使用して作成でき、種類パラメーターを指定して目的のプロット タイプを選択します。あるいは、histplot()、kdeplot()、ecdfplot()、rugplot() などの関数を直接使用して、特定の分布を視覚化することもできます。
histplot() 関数は、頻度分布の視覚化に優れています。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
出典:seaborn ドキュメント
kdeplot() は滑らかな分布曲線を表示するのに適していますが、ecdfplot() は累積比率を強調します。 Rugplot() は、生のデータ ポイントに詳細なマーカーを追加し、他の視覚化をより詳細に強化します。
Seaborn は、heatmap() などのツールを使用した二変量分布の視覚化もサポートしています。ヒートマップは、相関行列を示したり、比較したりする場合に特に効果的です。
3. カテゴリプロット
カテゴリ プロットは、カテゴリに分類されたデータを視覚化するように設計されています。これらのプロットを作成する一般的なアプローチは、catplot() 関数を使用し、kind パラメーターを指定して目的のプロット タイプを選択することです。これらの区画は 3 つの主要なファミリーに分類されます。
カテゴリ プロットの適切なタイプの選択は、回答したい特定の質問によって異なります。これらのプロットは、カテゴリ データを分析するための複数の視点を提供します。
- カテゴリ散布図
これらのプロットには、カテゴリ内の個々のデータ ポイントが表示され、パターンや分布を特定するのに役立ちます。例には、stripplot() や swarmplot() が含まれます。
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
出典: seaborn ドキュメント
- カテゴリ分布プロット
これらのプロットはカテゴリ内のデータ分布を要約し、変動性、広がり、中心的な傾向についての洞察を提供します。例には、boxplot()、violinplot()、boxenplot() などがあります。
- カテゴリ推定プロット
これらのプロットは、集計された推定値 (平均など) を計算し、ばらつきや信頼区間を示す誤差バーを含みます。例には、barplot()、pointplot()、countplot() などがあります。
適切な Seaborn プロットを選択する方法
プロットを作成する前に、次の質問を自問してください:
データはカテゴリ、数値、またはその両方ですか?
関係、分布、または比較を調査していますか?
データセットのサイズとスケールはどれくらいですか?
データを知ることで、最も適切な視覚化ツールが得られます。以下のスキーマは Kaggle からのもので、データの種類に基づいてグラフを選択する方法を示しています。
出典: kaggle
これを実用化するために、実世界のデータを使ってみましょう。学習時間、出席状況、保護者の参加、リソースへのアクセス、課外活動、睡眠時間、過去のスコア、モチベーション レベル、インターネット アクセス、個別指導セッション、世帯収入、教師の質、学校などの特徴を含む 20 列を含む Kaggle のデータセットを考えてみましょう。タイプ、仲間からの影響、身体活動、学習障害、親の教育レベル、自宅からの距離、性別、試験スコア。
- データを理解する データを理解するには、データセット内の変数のタイプを分析することから始めます。数値変数は関係プロットや分布プロットに最適ですが、カテゴリ変数はグループ化や比較に適しています。たとえば、折れ線グラフを使用して、出席状況に基づいて数学の成績の傾向を分析できます。同様に、ヒストプロットを利用して睡眠時間の分布を調べることができ、ほとんどの生徒が十分な休息をとれているかどうかを判断するのに役立ちます。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
- 目標を定義する どのような洞察を伝えたいかを尋ねて、目的を決定します。グループを比較したいですか?棒グラフや箱ひげ図などのカテゴリプロットを選択します。関係を探ることに興味がありますか?散布図などの関係プロットは優れた選択肢です。変動性を理解したいですか? histplot のような分布プロットを使用します。たとえば、散布図は、各点が観測値を表す 2 つの数値変数間の関係を効果的に表示します。これにより、相関関係、クラスター、外れ値を簡単に見つけることができます。学習時間が試験のスコアにどのような影響を与えるかを視覚化すると、より多くの学習時間がより高いスコアと相関するかどうかが明らかになります。
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")
- プロットをデータと目標に合わせる データと分析目的に適切なプロットを選択することが重要です。適切な視覚化により、有意義な洞察を効果的に抽出できます。たとえば、折れ線プロットは、ヒストグラムと比較して、時間の経過に伴う傾向を観察するのに適しています。間違ったプロットを使用すると、重要なパターンや洞察が曖昧になり、豊富なデータセットであっても役に立たなくなる可能性があります。たとえば、棒グラフは、親の関与のさまざまなレベルにわたる試験の平均得点を比較するのに最適です。このプロットは、カテゴリ全体の数値変数の平均 (またはその他の要約統計量) を強調表示するため、高レベルの比較に最適です。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Seaborn プロットをカスタマイズするためのヒント
plt.title()、plt.xlabel()、plt.ylabel() などの関数を使用してタイトルとラベルを追加すると、ビジュアライゼーションの明瞭さが向上します。カテゴリ ディメンションを組み込むには、Seaborn の hue 属性を利用します。これにより、データセット内の特定の列に基づいてデータ ポイントを区別できるようになります。 set_palette() 関数を使用して、coolwarm、husl、Set2 などのパレットで配色をカスタマイズします。さらに、 sns.set_theme() を使用してスタイルやサイズを調整し、plt.figure(figsize=(width, height)) を使用して図の寸法を定義することで、データ ポイントを区別します。
避けるべきよくある落とし穴
データの視覚化を通じて洞察を効果的に伝達するには、十分な情報を提供することとプロットの過密を避けることの間のバランスを取ることが重要です。グラフに過剰なデータ ポイントを追加すると、見る人が圧倒されてしまう可能性がありますが、詳細が不十分だと混乱が生じる可能性があります。常に明確な軸ラベルと凡例を含め、視覚化で強調したい重要な洞察が強調されていることを確認してください。
もう 1 つの一般的な問題は、誤解を招く視覚化の作成です。これを防ぐには、データを表すために軸が適切にスケーリングされていることを確認してください。
結論
適切な Seaborn プロットを選択することは、データの理解を強化し、洞察を効果的に伝えるための重要なステップです。適切な視覚化により、隠されたままのパターン、関係、傾向を明らかにすることができます。プロット タイプをデータ構造や分析目標 (分布、関係性、比較の調査など) に合わせることで、ストーリーテリングの明確さと正確さを確保できます。
データの視覚化は科学であると同時に芸術でもあります。新しい視点を発見したり、洞察を洗練したりするために、さまざまな Seaborn プロットを遠慮なく試してください。練習と創造力により、Seaborn の可能性を最大限に活用して生データを魅力的なビジュアル ナラティブに変換できるようになります。
以上がSeaborn プロットの選択が簡単に: データを効果的に視覚化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









