Scipy を使用して経験的分布を理論分布に当てはめる
はじめに
整数値の大規模なデータセットと計算を目的としています。 p 値、より高い値が発生する確率。これらの確率を決定するには、データ分布に近似する理論的な分布を求めます。この記事では、Python の Scipy パッケージを使用してこれを実現する方法について説明します。
分布のフィッティング
Scipy の scipy.stats モジュールは、連続および離散の広範なコレクションを提供します。確率分布。各分布には、その形状と動作を特徴付ける独自のパラメーターがあります。目標は、適合度検定に基づいて経験的データに最もよく適合する分布を見つけることです。
適合度検定
適合度テストは、経験的分布と理論的分布の間の差異を測定します。一般的な検定には、コルモゴロフ-スミルノフ検定とカイ二乗検定が含まれます。 Scipy はこれらのテストを実行する関数を提供しており、候補分布の適合性を評価できます。
Sum of Squared Error (SSE)
Oneこのアプローチは、適合度の尺度として二乗誤差和 (SSE) を利用することです。 SSE は、経験的確率密度関数と理論的確率密度関数間の二乗差を計算します。最小限の SSE を持つ分布が最適であると考えられます。
Python の実装
次の Python コードは、データを理論的な分布に適合させる方法を示しています。使用してSSE:
<br>pdas を pd としてインポート<br>numpy を np としてインポート<br>scipy.stats を st としてインポート<br>matplotlib.pyplot を plt としてインポート<p>データ = pd.read_csv('data.csv') # データファイルに置き換えます</p><h1 id="データのヒストグラム">データのヒストグラム</h1><p>plt.hist(data, bins=50)<br>plt.show() </p><h1 id="候補分布">候補分布</h1><p>dist_names = ['norm', 'expon', 'gamma', 'beta']</p><h1 id="各分布を当てはめて-SSE-を計算します">各分布を当てはめて SSE を計算します</h1><p>best_distribution = None<br>min_sse = np.inf<br> dist in dist_names:</p><pre class="brush:php;toolbar:false">dist = getattr(st, dist) params = dist.fit(data) # Calculate SSE sse = np.mean((dist.pdf(data, *params) - np.histogram(data, bins=50, density=True)[0]) ** 2) # Update the best distribution if necessary if sse <h1 id="の分布パラメータを出力します-最適な分布">の分布パラメータを出力します。最適な分布</h1><p>print(best_distribution[0].name, best_distribution[1])<br></p>
このコードは、最適な分布の名前を提供します。推定されたパラメータを使用します。これらのパラメーターを使用して p 値を計算し、分布の適合度を評価できます。
以上がPython で Scipy を使用して経験データを理論分布に適合させるにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonArraysSupportVariousoperations:1)SlicingExtractsSubsets、2)Appending/ExtendingAdddesements、3)inSertingSelementSatspecificpositions、4)remvingingDeletesements、5)sorting/verversingsorder、and6)listenionsionsionsionsionscreatenewlistsebasedexistin

numpyarraysAressertialentionsionceivationsefirication-efficientnumericalcomputations andDatamanipulation.theyarecrucialindatascience、mashineelearning、物理学、エンジニアリング、および促進可能性への適用性、scaledatiencyを効率的に、forexample、infinancialanalyyy

UseanArray.ArrayOverAlistinPythonは、Performance-criticalCode.1)homogeneousdata:araysavememorywithpedelements.2)Performance-criticalcode:Araysofterbetterbetterfornumerumerumericaleperations.3)interf

いいえ、notallistoperationSaresuptedbyarrays、andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorintorintorinsertizizing、whosimpactsporformance.2)リスト

toaccesselementsinapythonlist、useindexing、negativeindexing、slicing、oriteration.1)indexingstartsat0.2)negativeindexingAcsesess.3)slicingextractStions.4)reterationSuseSuseSuseSuseSeSeS forLoopseCheckLentlentlentlentlentlentlenttodExeror。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ホットトピック









