NumPy 配列の印刷における切り捨てを克服する
NumPy 配列を印刷するとき、データの全範囲が見えにくくなる、切り捨てられた表現がよく発生します。この切り捨ては、特に大規模な配列や複雑な配列を扱う場合にイライラする可能性があります。幸いなことに、NumPy はこの問題に対する解決策を提供します。
サイズに関係なく、完全な NumPy 配列を印刷するには、numpy.set_printoptions 関数を利用します。この関数を使用すると、配列の切り捨てのしきい値などの印刷設定を調整できます。
import sys import numpy # Set the printing threshold to infinity numpy.set_printoptions(threshold=sys.maxsize)
しきい値を sys.maxsize に設定すると、配列全体を切り捨てずに印刷するように NumPy に効果的に指示できます。これにより、情報の損失を避け、完全なデータを表示できるようになります。
10,000 個の要素を含む配列があるとします。
>> numpy.arange(10000)
切り捨てられた出力:
array([ 0, 1, 2, ..., 9997, 9998, 9999])
設定後の完全な出力しきい値:
array([ 0, 1, 2, ..., 9997, 9998, 9999])
同様に、250 行 40 列になるように再形成された多次元配列の場合:
>> numpy.arange(10000).reshape(250, 40)
切り捨てられた出力:
array([[ 0, 1, 2, ..., 37, 38, 39], [ 40, 41, 42, ..., 77, 78, 79], [ 80, 81, 82, ..., 117, 118, 119], ..., [9880, 9881, 9882, ..., 9917, 9918, 9919], [9920, 9921, 9922, ..., 9957, 9958, 9959], [9960, 9961, 9962, ..., 9997, 9998, 9999]])
しきい値設定後の完全な出力:
array([[ 0, 1, 2, ..., 37, 38, 39], [40, 41, 42, ..., 77, 78, 79], [80, 81, 82, ..., 117, 118, 119], ..., [9880, 9881, 9882, ..., 9917, 9918, 9919], [9920, 9921, 9922, ..., 9957, 9958, 9959], [9960, 9961, 9962, ..., 9997, 9998, 9999]])
By印刷しきい値を調整すると、NumPy 配列の内容全体を簡単に表示でき、データの探索と分析が容易になります。
以上がNumPy 配列の印刷の切り捨てを防ぐにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

AlaySaregenerallymorememory-effictient forstring forstring inumericaldataduetotheirfixed-sizenature anddirectmoryaccess.1)AraysstoreElementsinaCourowlock、Reducingoverheadfrompointertersormetadata.2)リスト

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Pythonリストは、さまざまな種類のデータを保存できます。サンプルリストには、整数、文字列、フローティングポイント番号、ブール膜、ネストされたリスト、辞書が含まれています。リストの柔軟性は、データ処理とプロトタイピングにおいて価値がありますが、コードの読みやすさと保守性を確保するためには注意して使用する必要があります。

Pythondoesnothavebuiltinarays; usethearmoduleformemory-efficienthogeneousdatastorage、while-lelistSareversatileformixeddatypes.Arraysareeffientive for forlardatedateSetsetype、wheneasofferistofibuliestibuliestuseduseerieartusedoersorerdatatess。

sostCommonlylysedModule forcreatinginpythonisnumpy.1)numProvidesefficientToolsForArrayoperations、理想的なfornumericaldata.2)arrayscanbecreatedusingnp.array()for1dand2dstructures.3)

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

WebStorm Mac版
便利なJavaScript開発ツール
