シリーズ内の複数の部分文字列に対する Pandas フィルタリングの最適化
背景
文字列内の複数の部分文字列に基づく大きな Pandas データフレームのフィルタリング列は、計算量の多い操作になる可能性があります。従来のアプローチには、各部分文字列にマスクを適用し、論理演算を使用してそれを削減することが含まれます。
提案されたアプローチ
効率を高めるために、正規表現 (エスケープを含む) を活用することをお勧めします。特殊文字) を部分文字列のマッチングに使用します。正規表現パイプ (|) を使用してエスケープされた部分文字列を結合すると、一致するものが見つかるまで各部分文字列を文字列に対してテストできます。
実装
import re # Escape special characters in substrings esc_lst = [re.escape(s) for s in lst] # Join escaped substrings using regex pipe pattern = '|'.join(esc_lst) # Filter based on concatenated pattern df[col].str.contains(pattern, case=False)
パフォーマンスに関する考慮事項
パフォーマンスは次のように強化されます。行ごとに必要なテストの数が減ります。このメソッドは、一致が見つかるまで部分文字列をチェックし、不要な反復を排除します。
ベンチマーク
50,000 個の文字列と 100 個の部分文字列を含むサンプル データフレームを使用すると、提案されたメソッドは約 1 回の処理を要します。従来のアプローチの 5 秒と比較して、2 秒です。このパフォーマンス上の利点は、データセットが大きくなるほど増大します。
結論
エスケープされた特殊文字を含む正規表現を活用することで、複数の部分文字列の Pandas データフレームを効率的にフィルタリングでき、大幅なコスト削減が可能になります。計算オーバーヘッド。
以上が正規表現は、シリーズ内の複数の部分文字列に対する Pandas フィルタリングをどのように最適化できますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

craftexecutablepythonscripts、次のようになります

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

メモ帳++7.3.1
使いやすく無料のコードエディター

ホットトピック









