重要なポイント
- LLM アプリケーションで並列処理戦略をマスターする
- 効率的なバッチ処理メカニズムを実装する
- スケーラブルな文書処理システムを構築する
- システムのパフォーマンスとリソース使用率を最適化します
並列処理の使用例
LLM アプリケーションでは、並列処理は以下に特に適しています。
- ドキュメントのバッチ処理
- マルチモデル並列推論
- 大規模データ分析
- リアルタイムストリーム処理
バッチ処理戦略の設計
1. 基本アーキテクチャ
from typing import List, Dict, Any from dataclasses import dataclass import asyncio from langchain.chat_models import ChatOpenAI from langchain.callbacks import AsyncCallbackHandler @dataclass class BatchConfig: """Batch processing configuration""" batch_size: int = 5 max_concurrent_tasks: int = 3 timeout_seconds: int = 30 retry_attempts: int = 2 class BatchProcessor: def __init__(self, config: BatchConfig): self.config = config self.llm = ChatOpenAI( temperature=0, request_timeout=config.timeout_seconds ) self.semaphore = asyncio.Semaphore( config.max_concurrent_tasks ) async def process_batch( self, items: List[Any] ) -> List[Dict]: """Main batch processing function""" batches = self._create_batches(items) results = [] for batch in batches: batch_results = await self._process_batch_with_semaphore( batch ) results.extend(batch_results) return results
2. 非同期処理の実装
class AsyncBatchProcessor(BatchProcessor): async def _process_single_item( self, item: Any ) -> Dict: """Process single item""" async with self.semaphore: for attempt in range(self.config.retry_attempts): try: return await self._execute_processing(item) except Exception as e: if attempt == self.config.retry_attempts - 1: return self._create_error_response(item, e) await asyncio.sleep(2 ** attempt) async def _execute_processing( self, item: Any ) -> Dict: """Execute specific processing logic""" task = asyncio.create_task( self.llm.agenerate([item]) ) try: result = await asyncio.wait_for( task, timeout=self.config.timeout_seconds ) return { "status": "success", "input": item, "result": result } except asyncio.TimeoutError: task.cancel() raise
実際のケース: バッチ文書処理システム
1. システムアーキテクチャ
class DocumentBatchProcessor: def __init__(self): self.config = BatchConfig( batch_size=10, max_concurrent_tasks=5 ) self.processor = AsyncBatchProcessor(self.config) self.results_manager = ResultsManager() async def process_documents( self, documents: List[str] ) -> Dict: """Process document batches""" try: preprocessed = await self._preprocess_documents( documents ) results = await self.processor.process_batch( preprocessed ) return await self.results_manager.merge_results( results ) except Exception as e: return self._handle_batch_error(e, documents)
2. リソース制御の仕組み
class ResourceController: def __init__(self): self.token_limit = 4096 self.request_limit = 100 self._request_count = 0 self._token_count = 0 self._reset_time = None async def check_limits(self) -> bool: """Check resource limits""" await self._update_counters() return ( self._request_count <h3> 3. 結果統合戦略 </h3> <pre class="brush:php;toolbar:false">class ResultsManager: def __init__(self): self.merge_strategies = { "text": self._merge_text_results, "embeddings": self._merge_embedding_results, "classifications": self._merge_classification_results } async def merge_results( self, results: List[Dict] ) -> Dict: """Merge processing results""" merged = { "success_count": 0, "error_count": 0, "results": [] } for result in results: if result["status"] == "success": merged["success_count"] += 1 merged["results"].append( await self._process_result(result) ) else: merged["error_count"] += 1 return merged
パフォーマンス最適化ガイド
1. メモリ管理
class MemoryManager: def __init__(self, max_memory_mb: int = 1024): self.max_memory = max_memory_mb * 1024 * 1024 self.current_usage = 0 async def monitor_memory(self): """Monitor memory usage""" import psutil process = psutil.Process() memory_info = process.memory_info() if memory_info.rss > self.max_memory: await self._trigger_memory_cleanup() async def _trigger_memory_cleanup(self): """Trigger memory cleanup""" import gc gc.collect()
2. パフォーマンスの監視
class PerformanceMonitor: def __init__(self): self.metrics = { "processing_times": [], "error_rates": [], "throughput": [] } async def record_metrics( self, batch_size: int, duration: float, errors: int ): """Record performance metrics""" self.metrics["processing_times"].append(duration) self.metrics["error_rates"].append(errors / batch_size) self.metrics["throughput"].append( batch_size / duration )
ベストプラクティス
-
バッチ処理の最適化
- システム リソースに基づいてバッチ サイズを動的に調整します
- インテリジェントな再試行メカニズムを実装する
- メモリ使用量を監視して最適化する
-
同時実行制御
- セマフォを使用して同時実行を制限する
- リクエストレート制限を実装する
- 適切なタイムアウト値を設定します
-
エラー処理
- 段階的なエラー処理を実装する
- 詳細なエラー情報を記録します
- 正常な劣化オプションを提供します
パフォーマンスのチューニングポイント
-
システムレベル
- システムリソースの使用状況を監視します
- メモリ管理を最適化する
- 負荷分散を実装する
-
アプリケーションレベル
- バッチ処理戦略を最適化する
- 同時実行パラメータを調整
- キャッシュメカニズムを実装する
まとめ
高性能 LLM アプリケーションを構築するには、並列処理が不可欠です。重要なポイント:
- 効率的なバッチ処理戦略を設計する
- 堅牢なリソース管理を実装する
- システムパフォーマンスを監視および最適化する
- エラーを適切に処理します
以上がLLM 並列処理の実践: パフォーマンス向上のための重要なテクニックの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

Dreamweaver Mac版
ビジュアル Web 開発ツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ドリームウィーバー CS6
ビジュアル Web 開発ツール
