小売店は毎日大規模な在庫を処理するため、在庫の監視と管理がさらに面倒になっています。従来の小売店の在庫管理は、非効率的な監視、追跡、管理を伴う面倒な方法論です。このため、小売店の在庫分析をシームレスに実行して、手作業を減らして手元在庫を減らし、より多くの販売在庫を実現する、堅牢なデジタル化された在庫管理システムの必要性が生じています。
この記事では、時系列機械学習モデルである SARIMA を使用して、小売店の在庫分析を効率的に実行し、時間の経過とともに顧客のニーズに応えるために必要な在庫パラメーターを計算して、小売店に最大の利益をもたらす方法を説明します。
データセット
まず、データセットをダウンロードします。このデータセットには、日付、製品の需要、現在の在庫レベルに関する情報を含む、特定の製品の履歴記録が含まれています。
コード
需要予測と在庫管理を実行するための Python コードは次のとおりです。
import pandas as pd import numpy as np import plotly.express as px from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import matplotlib.pyplot as plt from statsmodels.tsa.statespace.sarimax import SARIMAX data = pd.read_csv("demand_inventory.csv") print(data.head()) data = data.drop(columns=['Unnamed: 0']) fig_demand = px.line(data, x='Date', y='Demand', title='Demand Over Time') fig_demand.show() fig_inventory = px.line(data, x='Date', y='Inventory', title='Inventory Over Time') fig_inventory.show() data['Date'] = pd.to_datetime(data['Date'], format='%Y/%m/%d') time_series = data.set_index('Date')['Demand'] differenced_series = time_series.diff().dropna() # Plot ACF and PACF of differenced time series fig, axes = plt.subplots(1, 2, figsize=(12, 4)) plot_acf(differenced_series, ax=axes[0]) plot_pacf(differenced_series, ax=axes[1]) plt.show() order = (1, 1, 1) seasonal_order = (1, 1, 1, 2) model = SARIMAX(time_series, order=order, seasonal_order=seasonal_order) model_fit = model.fit(disp=False) future_steps = 10 predictions = model_fit.predict(len(time_series), len(time_series) + future_steps - 1) predictions = predictions.astype(int) print(predictions) # Create date indices for the future predictions future_dates = pd.date_range(start=time_series.index[-1] + pd.DateOffset(days=1), periods=future_steps, freq='D') # Create a pandas Series with the predicted values and date indices forecasted_demand = pd.Series(predictions, index=future_dates) # Initial inventory level initial_inventory = 5500 # Lead time (number of days it takes to replenish inventory) lead_time = 1 # Service level (probability of not stocking out) service_level = 0.95 # Calculate the optimal order quantity using the Newsvendor formula z = np.abs(np.percentile(forecasted_demand, 100 * (1 - service_level))) order_quantity = np.ceil(forecasted_demand.mean() + z).astype(int) # Calculate the reorder point reorder_point = forecasted_demand.mean() * lead_time + z # Calculate the optimal safety stock safety_stock = reorder_point - forecasted_demand.mean() * lead_time # Calculate the total cost (holding cost + stockout cost) holding_cost = 0.1 # it's different for every business, 0.1 is an example stockout_cost = 10 # # it's different for every business, 10 is an example total_holding_cost = holding_cost * (initial_inventory + 0.5 * order_quantity) total_stockout_cost = stockout_cost * np.maximum(0, forecasted_demand.mean() * lead_time - initial_inventory) # Calculate the total cost total_cost = total_holding_cost + total_stockout_cost print("Optimal Order Quantity:", order_quantity) print("Reorder Point:", reorder_point) print("Safety Stock:", safety_stock) print("Total Cost:", total_cost)
コードを理解する
まず、季節パターンを観察できる「長期にわたる需要」と「長期にわたる在庫」を視覚化します。そこで、需要を予測するために SARIMA (季節的自己回帰移動平均) を使用します。
SARIMA を使用するには、p (自己回帰順序)、d (差分の次数)、q (移動平均順序)、P (季節 AR 順序)、D (季節差分)、Q (季節 MA 順序) が必要です。 。 ACF — 自己相関関数および PACF — 偏自己相関関数は、パラメーター値を見つけるためにプロットされます。
ここで予測するために、いくつかの値を初期化します。今後のステップ、つまり予測日数を 10、リード タイム、つまり在庫を補充する日数を 1、その他の小売店に依存する値に設定します。
最後に、在庫の最適な結果を計算するために、NewsVendor の式を使用します。 NewsVendor の式は、最適な在庫レベルを決定するために使用される数学的モデルである NewsVendor モデルから派生しています。 NewsVendor の式について詳しくは、この記事をご覧ください。
評価された最終結果は次のとおりです。
- 最適発注量 — 在庫レベルが一定の点に達したときにサプライヤーに発注する必要がある製品の数量を指します。
- 再注文ポイント — 在庫がなくなる前に補充するために新しい注文を行う必要がある在庫レベル。
- 安全在庫 — 需要と供給の不確実性を考慮して手元に保管される追加在庫。需要やリードタイムの予期せぬ変動に対する緩衝材として機能します。
- 総コスト — 在庫管理に関連する合計コストを表します。
提案された SARIMA モデルは、ニュースベンダーの式を使用して効率的な方法で小売店の在庫管理をデジタル化し、小売業者に最大の利益をもたらしながら顧客を満たすために必要な最適な在庫を計算しました。
この記事があなたが探していたものに役立つことを願っています。記事に関する改善や提案は大歓迎です。乾杯:)
ここで私のソーシャルをチェックして、お気軽に接続してください ^_^
以上が小売店における需要予測と在庫管理 - SARIMA モデルの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ドリームウィーバー CS6
ビジュアル Web 開発ツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール
