検索
ホームページバックエンド開発Python チュートリアルPython でリストの要素ごとの追加を実行する最も効率的な方法は何ですか?

What's the Most Efficient Way to Perform Element-Wise Addition of Lists in Python?

リストの要素ごとの追加: Python 的アプローチ

2 つのリストの要素ごとの追加は、いくつかの組み込みメソッドを使用して Python で簡単に実行できます。関数で。面倒な反復を行わずにこれを実現する方法は次のとおりです。

operator.addmap() を使用する:

from operator import add
result = list(map(add, list1, list2))

map() 関数は、add 関数をそれぞれに適用します。 list1 と list2 の対応する要素を検索し、結果のリストを返します。

または、次のように使用します。 リスト内包表記を使用した zip():

result = [sum(x) for x in zip(list1, list2)]

zip() 関数は、list1 と list2 の要素をペアにして一連のタプルにします。次に、リスト内包表記によって各タプルの合計が計算され、要素ごとの加算が生成されます。

パフォーマンスの比較:

これらのアプローチの効率を比較するために、タイミングを実行しました。大きなリスト (100,000 要素) のテスト:

>>> from itertools import izip
>>> list2 = [4, 5, 6] * 10 ** 5
>>> list1 = [1, 2, 3] * 10 ** 5

>>> %timeit from operator import add; map(add, list1, list2)
10 loops, best of 3: 44.6 ms per loop

>>> %timeit from itertools import izip; [a + b for a, b in izip(list1, list2)]
10 loops, best of 3: 71 ms per loop

>>> %timeit [a + b for a, b in zip(list1, list2)]
10 loops, best of 3: 112 ms per loop

>>> %timeit from itertools import izip; [sum(x) for x in izip(list1, list2)]
1 loops, best of 3: 139 ms per loop

>>> %timeit [sum(x) for x in zip(list1, list2)]
1 loops, best of 3: 177 ms per loop

次のように結果が示すように、operator.add を使用した map() アプローチは、大きなリストに対しては最も高速です。

以上がPython でリストの要素ごとの追加を実行する最も効率的な方法は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Mar 10, 2025 pm 06:48 PM

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

人気のあるPythonライブラリとその用途は何ですか?人気のあるPythonライブラリとその用途は何ですか?Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

Pythonの仮想環境の目的を説明してください。Pythonの仮想環境の目的を説明してください。Mar 19, 2025 pm 02:27 PM

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。

正規表現とは何ですか?正規表現とは何ですか?Mar 20, 2025 pm 06:25 PM

正規表現は、プログラミングにおけるパターンマッチングとテキスト操作のための強力なツールであり、さまざまなアプリケーションにわたるテキスト処理の効率を高めます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。