検索
ホームページバックエンド開発Python チュートリアルPySpark の文字列列を日付形式に変換するにはどうすればよいですか?

How to Convert PySpark String Columns to Date Format?

PySpark 文字列を日付形式に変換する

MM-dd-yyyy 形式で日付を表す文字列列を持つ PySpark DataFrame があります。 to_date 関数を使用してこの列を日付形式に変換しようとすると、null が返されます。この記事では、この問題に対処する方法を説明します。

更新された推奨事項 (Spark 2.2 ):

Spark バージョン 2.2 以降の場合、推奨されるアプローチは to_date またはto_timestamp 関数。フォーマット引数をサポートするようになりました。これにより、入力形式を指定し、文字列列を日付またはタイムスタンプに直接変換できます:

from pyspark.sql.functions import to_timestamp

df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect()

# Output:
# [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))]

元の回答 (Spark

以前の Spark バージョンでは、ユーザー定義関数を必要とせずに次のメソッドを使用できます。 (UDF):

from pyspark.sql.functions import unix_timestamp, from_unixtime

df = spark.createDataFrame(
    [("11/25/1991",), ("11/24/1991",), ("11/30/1991",)], 
    ['date_str']
)

df2 = df.select(
    'date_str', 
    from_unixtime(unix_timestamp('date_str', 'MM/dd/yyy')).alias('date')
)

print(df2)

# Output:
# DataFrame[date_str: string, date: timestamp]

df2.show(truncate=False)

# Output:
# +----------+-------------------+
# |date_str  |date               |
# +----------+-------------------+
# |11/25/1991|1991-11-25 00:00:00|
# |11/24/1991|1991-11-24 00:00:00|
# |11/30/1991|1991-11-30 00:00:00|
# +----------+-------------------+

このメソッドでは、unix_timestamp は文字列列を Unix タイムスタンプに変換し、from_unixtime は Unix タイムスタンプを日付列に変換します。

以上がPySpark の文字列列を日付形式に変換するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonを使用してテキストファイルのZIPF配布を見つける方法Pythonを使用してテキストファイルのZIPF配布を見つける方法Mar 05, 2025 am 09:58 AM

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonでの画像フィルタリングPythonでの画像フィルタリングMar 03, 2025 am 09:44 AM

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

Pythonを使用してPDFドキュメントの操作方法Pythonを使用してPDFドキュメントの操作方法Mar 02, 2025 am 09:54 AM

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

DjangoアプリケーションでRedisを使用してキャッシュする方法DjangoアプリケーションでRedisを使用してキャッシュする方法Mar 02, 2025 am 10:10 AM

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonで独自のデータ構造を実装する方法Pythonで独自のデータ構造を実装する方法Mar 03, 2025 am 09:28 AM

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。

Pythonの並列および同時プログラミングの紹介Pythonの並列および同時プログラミングの紹介Mar 03, 2025 am 10:32 AM

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール