検索
ホームページバックエンド開発Python チュートリアルエンタープライズ エージェント システムの構築: コア コンポーネントの設計と最適化

Building Enterprise Agent Systems: Core Component Design and Optimization

導入

エンタープライズ グレードの AI エージェントを構築するには、コンポーネントの設計、システム アーキテクチャ、エンジニアリングの実践について慎重に検討する必要があります。この記事では、堅牢でスケーラブルなエージェント システムを構築するための主要なコンポーネントとベスト プラクティスについて説明します。

1. 迅速なテンプレートエンジニアリング

1.1 テンプレートのデザインパターン

from typing import Protocol, Dict
from jinja2 import Template

class PromptTemplate(Protocol):
    def render(self, **kwargs) -> str:
        pass

class JinjaPromptTemplate:
    def __init__(self, template_string: str):
        self.template = Template(template_string)

    def render(self, **kwargs) -> str:
        return self.template.render(**kwargs)

class PromptLibrary:
    def __init__(self):
        self.templates: Dict[str, PromptTemplate] = {}

    def register_template(self, name: str, template: PromptTemplate):
        self.templates[name] = template

    def get_template(self, name: str) -> PromptTemplate:
        return self.templates[name]

1.2 バージョン管理とテスト

class PromptVersion:
    def __init__(self, version: str, template: str, metadata: dict):
        self.version = version
        self.template = template
        self.metadata = metadata
        self.test_cases = []

    def add_test_case(self, inputs: dict, expected_output: str):
        self.test_cases.append((inputs, expected_output))

    def validate(self) -> bool:
        template = JinjaPromptTemplate(self.template)
        for inputs, expected in self.test_cases:
            result = template.render(**inputs)
            if not self._validate_output(result, expected):
                return False
        return True

2. 階層型記憶システム

2.1 メモリアーキテクチャ

from typing import Any, List
from datetime import datetime

class MemoryEntry:
    def __init__(self, content: Any, importance: float):
        self.content = content
        self.importance = importance
        self.timestamp = datetime.now()
        self.access_count = 0

class MemoryLayer:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.memories: List[MemoryEntry] = []

    def add(self, entry: MemoryEntry):
        if len(self.memories) >= self.capacity:
            self._evict()
        self.memories.append(entry)

    def _evict(self):
        # Implement memory eviction strategy
        self.memories.sort(key=lambda x: x.importance * x.access_count)
        self.memories.pop(0)

class HierarchicalMemory:
    def __init__(self):
        self.working_memory = MemoryLayer(capacity=5)
        self.short_term = MemoryLayer(capacity=50)
        self.long_term = MemoryLayer(capacity=1000)

    def store(self, content: Any, importance: float):
        entry = MemoryEntry(content, importance)

        if importance > 0.8:
            self.working_memory.add(entry)
        elif importance > 0.5:
            self.short_term.add(entry)
        else:
            self.long_term.add(entry)

2.2 メモリの取得とインデックス作成

from typing import List, Tuple
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

class MemoryIndex:
    def __init__(self, embedding_model):
        self.embedding_model = embedding_model
        self.embeddings = []
        self.memories = []

    def add(self, memory: MemoryEntry):
        embedding = self.embedding_model.embed(memory.content)
        self.embeddings.append(embedding)
        self.memories.append(memory)

    def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]:
        query_embedding = self.embedding_model.embed(query)
        similarities = cosine_similarity(
            [query_embedding], 
            self.embeddings
        )[0]

        top_k_indices = np.argsort(similarities)[-k:]

        return [
            (self.memories[i], similarities[i]) 
            for i in top_k_indices
        ]

3. 観察可能な推論チェーン

3.1 チェーン構造

from typing import List, Optional
from dataclasses import dataclass
import uuid

@dataclass
class ThoughtNode:
    content: str
    confidence: float
    supporting_evidence: List[str]

class ReasoningChain:
    def __init__(self):
        self.chain_id = str(uuid.uuid4())
        self.nodes: List[ThoughtNode] = []
        self.metadata = {}

    def add_thought(self, thought: ThoughtNode):
        self.nodes.append(thought)

    def get_path(self) -> List[str]:
        return [node.content for node in self.nodes]

    def get_confidence(self) -> float:
        if not self.nodes:
            return 0.0
        return sum(n.confidence for n in self.nodes) / len(self.nodes)

3.2 チェーンの監視と分析

import logging
from opentelemetry import trace
from prometheus_client import Histogram

reasoning_time = Histogram(
    'reasoning_chain_duration_seconds',
    'Time spent in reasoning chain'
)

class ChainMonitor:
    def __init__(self):
        self.tracer = trace.get_tracer(__name__)

    def monitor_chain(self, chain: ReasoningChain):
        with self.tracer.start_as_current_span("reasoning_chain") as span:
            span.set_attribute("chain_id", chain.chain_id)

            with reasoning_time.time():
                for node in chain.nodes:
                    with self.tracer.start_span("thought") as thought_span:
                        thought_span.set_attribute(
                            "confidence", 
                            node.confidence
                        )
                        logging.info(
                            f"Thought: {node.content} "
                            f"(confidence: {node.confidence})"
                        )

4. コンポーネントの分離と再利用

4.1 インターフェース設計

from abc import ABC, abstractmethod
from typing import Generic, TypeVar

T = TypeVar('T')

class Component(ABC, Generic[T]):
    @abstractmethod
    def process(self, input_data: T) -> T:
        pass

class Pipeline:
    def __init__(self):
        self.components: List[Component] = []

    def add_component(self, component: Component):
        self.components.append(component)

    def process(self, input_data: Any) -> Any:
        result = input_data
        for component in self.components:
            result = component.process(result)
        return result

4.2 コンポーネントレジストリ

class ComponentRegistry:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
            cls._instance.components = {}
        return cls._instance

    def register(self, name: str, component: Component):
        self.components[name] = component

    def get(self, name: str) -> Optional[Component]:
        return self.components.get(name)

    def create_pipeline(self, component_names: List[str]) -> Pipeline:
        pipeline = Pipeline()
        for name in component_names:
            component = self.get(name)
            if component:
                pipeline.add_component(component)
        return pipeline

5. パフォーマンスの監視と最適化

5.1 パフォーマンス指標

from dataclasses import dataclass
from typing import Dict
import time

@dataclass
class PerformanceMetrics:
    latency: float
    memory_usage: float
    token_count: int
    success_rate: float

class PerformanceMonitor:
    def __init__(self):
        self.metrics: Dict[str, List[PerformanceMetrics]] = {}

    def record_operation(
        self,
        operation_name: str,
        metrics: PerformanceMetrics
    ):
        if operation_name not in self.metrics:
            self.metrics[operation_name] = []
        self.metrics[operation_name].append(metrics)

    def get_average_metrics(
        self,
        operation_name: str
    ) -> Optional[PerformanceMetrics]:
        if operation_name not in self.metrics:
            return None

        metrics_list = self.metrics[operation_name]
        return PerformanceMetrics(
            latency=sum(m.latency for m in metrics_list) / len(metrics_list),
            memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list),
            token_count=sum(m.token_count for m in metrics_list) / len(metrics_list),
            success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list)
        )

5.2 最適化戦略

class PerformanceOptimizer:
    def __init__(self, monitor: PerformanceMonitor):
        self.monitor = monitor
        self.thresholds = {
            'latency': 1.0,  # seconds
            'memory_usage': 512,  # MB
            'token_count': 1000,
            'success_rate': 0.95
        }

    def analyze_performance(self, operation_name: str) -> List[str]:
        metrics = self.monitor.get_average_metrics(operation_name)
        if not metrics:
            return []

        recommendations = []

        if metrics.latency > self.thresholds['latency']:
            recommendations.append(
                "Consider implementing caching or parallel processing"
            )

        if metrics.memory_usage > self.thresholds['memory_usage']:
            recommendations.append(
                "Optimize memory usage through batch processing"
            )

        if metrics.token_count > self.thresholds['token_count']:
            recommendations.append(
                "Implement prompt optimization to reduce token usage"
            )

        if metrics.success_rate 



<h2>
  
  
  結論
</h2>

<p>エンタープライズ グレードのエージェント システムを構築するには、次の点に細心の注意を払う必要があります。</p>

  • 構造化されたプロンプト管理とバージョン管理
  • 効率的でスケーラブルなメモリ システム
  • 観察可能で追跡可能な推論プロセス
  • モジュール式で再利用可能なコンポーネント設計
  • 包括的なパフォーマンスの監視と最適化

以上がエンタープライズ エージェント システムの構築: コア コンポーネントの設計と最適化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)