注: chatGPT/LLM の出力ではありません
データ スクレイピングは、公開 Web ソースからデータを収集するプロセスであり、ほとんどの場合、スクリプトを使用して自動化された方法で行われます。自動化により、収集されたデータにはエラーが含まれることが多く、使用するにはフィルタリングしてクリーンアップする必要があります。ただし、スクレイピング中にスクレイピングされたデータを検証できればより良いでしょう。
データ検証の要件を考慮すると、Scrapy のようなスクレイピング フレームワークのほとんどには、データ検証に使用できるパターンが組み込まれています。ただし、データ スクレイピング プロセスでは、スクレイピングに requests や Beautifulsoup などの汎用モジュールのみを使用することがよくあります。このような場合、収集したデータを検証するのは難しいため、このブログ投稿では、Pydantic を使用した検証によるデータ スクレイピングの簡単なアプローチを説明します。
https://docs.pydantic.dev/latest/
Pydantic はデータ検証 Python モジュールです。これは人気のある API モジュール FastAPI のバックボーンでもあり、Pydantic と同様に、データ スクレイピング中の検証に使用できる他の Python モジュールもあります。ただし、このブログでは pydantic を調査しており、ここに代替パッケージのリンクがあります (学習演習として、他のモジュールで pydantic を変更してみることもできます)
- Cerberus は、Python 用の軽量で拡張可能なデータ検証ライブラリです。 https://pypi.org/project/Cerberus/
スクレイピングの計画:
このブログでは、引用サイトからの引用をスクラップさせていただきます。
リクエストと Beautifulsoup を使用してデータを取得します。 pydantic データ クラスを作成して、スクレイピングされた各データを検証します。 フィルタリングされ検証されたデータを json ファイルに保存します。
より良く整理して理解するために、各ステップはメインセクションで使用できる Python メソッドとして実装されています。
基本的なインポート
import requests # for web request from bs4 import BeautifulSoup # cleaning html content # pydantic for validation from pydantic import BaseModel, field_validator, ValidationError import json
1. ターゲットサイトと見積もりの取得
引用符をスクレイピングするために (http://quotes.toscrape.com/) を使用しています。各引用には、quote_text、author、tags の 3 つのフィールドがあります。例:
以下のメソッドは、指定された URL の HTML コンテンツを取得する一般的なスクリプトです。
def get_html_content(page_url: str) -> str: page_content ="" # Send a GET request to the website response = requests.get(url) # Check if the request was successful (status code 200) if response.status_code == 200: page_content = response.content else: page_content = f'Failed to retrieve the webpage. Status code: {response.status_code}' return page_content
2. スクレイピングから見積データを取得する
リクエストと beautifulsoup を使用して、指定された URL からデータをスクレイピングします。このプロセスは 3 つの部分に分かれています: 1) Web から HTML コンテンツを取得します。 2) 対象フィールドごとに必要な HTML タグを抽出します。 3) 各タグから値を取得します
import requests # for web request from bs4 import BeautifulSoup # cleaning html content # pydantic for validation from pydantic import BaseModel, field_validator, ValidationError import json
def get_html_content(page_url: str) -> str: page_content ="" # Send a GET request to the website response = requests.get(url) # Check if the request was successful (status code 200) if response.status_code == 200: page_content = response.content else: page_content = f'Failed to retrieve the webpage. Status code: {response.status_code}' return page_content
以下のスクリプトは、各引用符の div からデータ ポイントを取得します。
def get_tags(tags): tags =[tag.get_text() for tag in tags.find_all('a')] return tags
3. Pydantic データクラスを作成し、各見積もりのデータを検証します
見積もりの各フィールドに従って、pydantic クラスを作成し、データ スクレイピング中のデータ検証に同じクラスを使用します。
卑劣なモデル引用
以下は、quote_text、author、tags などの 3 つのフィールドを持つ BaseModel から拡張された Quote クラスです。この 3 つのうち、quote_text と author は文字列 (str) 型で、tags はリスト型です。
2 つのバリデーター メソッド (デコレーター付き) があります。
1) tags_more_than_two () : 2 つ以上のタグが必要かどうかをチェックします。 (これは単なる例であり、ここには任意のルールを含めることができます)
2.) check_quote_text(): このメソッドは引用符から「」を削除し、テキストをテストします。
def get_quotes_div(html_content:str) -> str : # Parse the page content with BeautifulSoup soup = BeautifulSoup(html_content, 'html.parser') # Find all the quotes on the page quotes = soup.find_all('div', class_='quote') return quotes
データの取得と検証
pydantic を使用するとデータ検証は非常に簡単です。たとえば、以下のコードでは、スクレイピングされたデータを pydantic クラス Quote に渡します。
# Loop through each quote and extract the text and author for quote in quotes_div: quote_text = quote.find('span', class_='text').get_text() author = quote.find('small', class_='author').get_text() tags = get_tags(quote.find('div', class_='tags')) # yied data to a dictonary quote_temp ={'quote_text': quote_text, 'author': author, 'tags':tags }
class Quote(BaseModel): quote_text:str author:str tags: list @field_validator('tags') @classmethod def tags_more_than_two(cls, tags_list:list) -> list: if len(tags_list) str: return quote_text.removeprefix('“').removesuffix('”')
4. データを保存する
データが検証されると、json ファイルに保存されます。 (Python 辞書を json ファイルに変換する汎用メソッドが記述されています)
quote_data = Quote(**quote_temp)
すべてをまとめる
スクレイピングの各部分を理解したら、すべてをまとめてデータ収集のためにスクレイピングを実行できます。
def get_quotes_data(quotes_div: list) -> list: quotes_data = [] # Loop through each quote and extract the text and author for quote in quotes_div: quote_text = quote.find('span', class_='text').get_text() author = quote.find('small', class_='author').get_text() tags = get_tags(quote.find('div', class_='tags')) # yied data to a dictonary quote_temp ={'quote_text': quote_text, 'author': author, 'tags':tags } # validate data with Pydantic model try: quote_data = Quote(**quote_temp) quotes_data.append(quote_data.model_dump()) except ValidationError as e: print(e.json()) return quotes_data
注: 改訂が計画されています。改訂版に含めるアイデアや提案をお知らせください。
リンクとリソース:
https://pypi.org/project/parsel/
https://docs.pydantic.dev/latest/
以上がスクレイピングしながら検証: Pydantic Validation を使用したデータ スクレイピングの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonは、インターネットからファイルをダウンロードするさまざまな方法を提供します。これは、urllibパッケージまたはリクエストライブラリを使用してHTTPを介してダウンロードできます。このチュートリアルでは、これらのライブラリを使用してPythonからURLからファイルをダウンロードする方法を説明します。 ライブラリをリクエストします リクエストは、Pythonで最も人気のあるライブラリの1つです。クエリ文字列をURLに手動で追加したり、POSTデータのエンコードをフォームに追加せずに、HTTP/1.1リクエストを送信できます。 リクエストライブラリは、以下を含む多くの機能を実行できます フォームデータを追加します マルチパートファイルを追加します Python応答データにアクセスします リクエストを行います 頭

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

自然言語処理(NLP)は、人間の言語の自動または半自動処理です。 NLPは言語学と密接に関連しており、認知科学、心理学、生理学、数学の研究とのリンクがあります。コンピューターサイエンスで

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
