検索
ホームページバックエンド開発Python チュートリアル複雑なイテレータを使用せずに、共通の列に基づいて複数の DataFrame を効率的にマージするにはどうすればよいでしょうか?

How can you efficiently merge multiple DataFrames based on a common column without complex iterators?

複数のデータフレームのマージ

問題ステートメント

複数のデータフレームのマージは、特にデータフレームが異なる場合には困難な作業になる可能性があります。形状と構造。最も一般的なアプローチには、merge() 関数を繰り返し使用することが含まれますが、これは複雑になり、多数のデータフレームに対して読み取れなくなる可能性があります。

質問

複数のデータフレームをマージするにはどうすればよいですか?再帰や複雑な手段を使用せずに、共通の列に基づいたデータフレームを効率的かつエレガントに作成iterators?

Answer

reduce() 関数は、複数のデータフレームをマージするための再帰の代替手段を提供します。 reduce() 関数は、項目のリストに関数を繰り返し適用して、項目のリストを 1 つの値に減らします。この場合、関数は merge() 関数で、項目のリストはデータフレームのリストです。

import pandas as pd
from functools import reduce

# Load dataframes
df1 = pd.read_csv('dataframe1.csv')
df2 = pd.read_csv('dataframe2.csv')
df3 = pd.read_csv('dataframe3.csv')

# Create a list of dataframes
dataframes = [df1, df2, df3]

# Merge dataframes
df_merged = reduce(lambda left, right: pd.merge(left, right, on='date', how='outer'), dataframes)

説明

reduce()この関数は、関数 pd.merge を最初の引数として、データフレームのリストを 2 番目の引数として呼び出します。 pd.merge() 関数は 2 つのデータフレームをマージし、reduce() 関数は結果をリスト内の次のデータフレームと繰り返しマージし、リストを 1 つのマージされたデータフレームに縮小します。

on='date'引数は、すべてのデータフレームに共通であると想定される「日付」列に基づいてマージを実行することを指定します。 how='outer' パラメーターは、「date」列に対応する値があるかどうかに関係なく、両方のデータフレームのすべての行をマージされたデータフレームに含める必要があることを示します。これにより、同じ日付値を持つすべての行が 1 つの行にマージされます。

Result

df_merged 変数には、個々のデータフレーム。各データフレームの対応する行が「日付」列に基づいて配置されます。この方法は効率的で柔軟で読みやすいため、多数のデータフレームを結合するための理想的なソリューションとなります。

以上が複雑なイテレータを使用せずに、共通の列に基づいて複数の DataFrame を効率的にマージするにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
numpyを使用してマルチディメンシャルアレイをどのように作成しますか?numpyを使用してマルチディメンシャルアレイをどのように作成しますか?Apr 29, 2025 am 12:27 AM

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

Numpyアレイの「ブロードキャスト」の概念を説明します。Numpyアレイの「ブロードキャスト」の概念を説明します。Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。Apr 29, 2025 am 12:20 AM

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

Pythonアレイ内の要素にどのようにアクセスしますか?Pythonアレイ内の要素にどのようにアクセスしますか?Apr 29, 2025 am 12:11 AM

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Apr 28, 2025 pm 04:34 PM

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

Pythonのモジュールとパッケージとは何ですか?Pythonのモジュールとパッケージとは何ですか?Apr 28, 2025 pm 04:33 PM

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

PythonのDocstringとは何ですか?PythonのDocstringとは何ですか?Apr 28, 2025 pm 04:30 PM

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール