Numpy 配列と行列: どちらを選択するか、そしてその理由は?
Python で数値データを扱うとき、NumPy 配列と行列という 2 つの密接に関連したデータ構造に遭遇することがあります。 。この記事の目的は、それらの違い、長所、短所を明確にして、プログラムでどちらを使用するかを十分な情報に基づいて決定できるようにすることです。
違い
次元: 配列は次のことができます。行列は厳密に 2 次元ですが、
行列演算子: 行列は行列の乗算に便利な表記法 (a*b など) を提供しますが、配列では行列演算に np.dot または @ を使用する必要があります。
転置: 両方の配列行列には転置を表す .T が付きます。行列は共役転置の .H と逆行列の .I もサポートします。
要素ごとの演算: 配列はデフォルトで要素ごとの演算を実行しますが、行列は np を除いて演算を行列の積として扱います。ドットが使用されます。
特殊演算子: '**'演算子は配列と行列では異なる意味を持ちます。配列の場合は要素ごとに要素を 2 乗し、行列の場合は行列の乗算を実行します。
利点と欠点
配列
利点:
- より一般的で、任意の数を許可します。次元。
- 一貫した要素ごとの演算。
- 行列と配列が混在するプログラムでの管理が容易。
欠点:
- Python バージョンの利便性の低い行列乗算構文3.5 より古い。
行列
利点:
- 便利な行列乗算表記。
- を直接サポート転置や転置などの高度な行列演算逆。
欠点:
- 2 次元に限定されます。
- プログラム内で配列と混合すると混乱を引き起こす可能性があります。
配列と行列
2 次元以上のデータを扱う必要がある場合、または要素ごとの操作で値の一貫性が必要な場合は、配列をお勧めします。
プロジェクトが主に行う場合行列が含まれる場合、行列によって提供される 行列演算 と 構文上の利便性 が影響する可能性があります。
最終的に、最適な選択はプログラムの特定の要件によって異なります。 np.asmatrix と np.asarray を使用して配列と行列の間で変換できることは注目に値します。
以上がNumPy 配列と行列: それぞれをいつ使用する必要がありますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
