Python での HTTP リクエスト ディスパッチの最適化
大規模な HTTP リクエストの処理は、特に数千の URL を含むタスクの場合、Python で課題となる可能性があります。 。この記事では、同時実行性とスレッド化を活用してパフォーマンスを最大化する、Python 2.6 で 100,000 の HTTP リクエストをディスパッチするための非常に効率的なソリューションについて説明します。
ツイストレス ソリューション:
次のコード スニペットは、次のコード スニペットを提供します。 HTTP リクエストを同時に送信するための高速かつ効果的な方法:
from urlparse import urlparse from threading import Thread import httplib, sys from Queue import Queue concurrent = 200 def doWork(): while True: url = q.get() status, url = getStatus(url) doSomethingWithResult(status, url) q.task_done() def getStatus(ourl): try: url = urlparse(ourl) conn = httplib.HTTPConnection(url.netloc) conn.request("HEAD", url.path) res = conn.getresponse() return res.status, ourl except: return "error", ourl def doSomethingWithResult(status, url): print status, url q = Queue(concurrent * 2) for i in range(concurrent): t = Thread(target=doWork) t.daemon = True t.start() try: for url in open('urllist.txt'): q.put(url.strip()) q.join() except KeyboardInterrupt: sys.exit(1)
説明:
- スレッド プールは、構成可能な同時実行レベルで作成されます (この場合、200)。
- プール内の各スレッドは doWork 関数を実行します。この関数はキューから URL をフェッチし、HTTP HEAD リクエストを送信してステータス コードを取得します。
- 結果はdoSomethingWithResult 関数。応答に基づいてログを記録したり、他の操作を実行したりするようにカスタマイズできます。
- キューにより、タスクがスレッド間で均等に分散され、競合が最小限に抑えられ、スループットが向上します。
このアプローチは、Twisted ベースのソリューションよりも高速であると同時に、CPU 使用率も削減されることが示されています。これは、Python 2.6 で大規模な HTTP リクエストを処理するための非常に効率的で信頼性の高い方法を提供します。
以上がPython 2.6 で 100,000 URL の HTTP リクエストのディスパッチを最適化するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。

fasteStMethodDodforListConcatenationinpythOndontsonistize:1)forsmallLists、operatorisefficient.2)forlargerlists、list.extend()orlistcomlethingisfaster、withextend()beingmorememory-efficient bymodifyigniviselistinistin-place。

to insertelementsIntopeaseThonList、useappend()toaddtotheend、insert()foraspificposition、andextend()formultipleElements.1)useappend()foraddingsingleitemstotheend.2)useintert()toaddataspecificindex、cont'slowerforforgelists.3)

PythonListsareimplementedasdynamicarrays、notlinkedlists.1)they restorediguourmemoryblocks、それはパフォーマンスに影響を与えることに影響を与えます

pythonoffersfourmainmethodstoremoveelements fromalist:1)removesthefirstoccurrenceofavalue、2)pop(index(index(index)removes regvess returnsaspecifiedindex、3)delstatementremoveselementselementsbyindexorseLice、および4)clear()

toresolvea "許可denided" errors whenrunningascript、sofflowthesesteps:1)checkandadaddadaddadadaddaddadadadaddadaddadaddadaddaddaddaddaddadaddadaddaddaddaddadaddaddaddadadaddadaddadaddadadisionsisingmod xmyscript.shtomakeitexexutable.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
