辞書を使用した Pandas シリーズの値置換のパフォーマンスの向上
辞書を使用した Pandas シリーズの値の置換は一般的なタスクです。 s.replace(d) を使用して値を置換することをお勧めしますが、単純なリスト内包表記を使用するよりも大幅に遅くなる可能性があります。
パフォーマンス低下の原因
パフォーマンスの低下s.replace(d) の機能は、エッジケースやまれな状況の処理に由来しています。これには以下が含まれます:
- 辞書をリストに変換する。
- リストを反復処理し、ネストされた辞書をチェックする。
- キーと値の反復子をreplace 関数。
代替方法
パフォーマンスを向上させるには、次の方法の使用を検討してください:
- フルマップ: 系列内のすべての値が辞書によってマップされる場合は、s.map(d) を使用します。この方法は効率的で、一貫して高速です。
- 部分マップ: 値のごく一部 (たとえば、5% 未満) のみが辞書によってマップされる場合は、 s.map(d ).fillna(s['A']).astype(int)。このアプローチでは、マッピングと充填を組み合わせて、高価な反復の必要性を回避します。
ベンチマーク
ベンチマークは、s.replace(d)、s のパフォーマンスの違いを示しています。 .map(d)、およびリストの内包表記:
##### Full Map ##### d = {i: i+1 for i in range(1000)} %timeit df['A'].replace(d) # Slow (1.98s) %timeit df['A'].map(d) # Fast (84.3ms) ##### Partial Map ##### d = {i: i+1 for i in range(10)} %timeit df['A'].replace(d) # Intermediate (20.1ms) %timeit df['A'].map(d).fillna(df['A']).astype(int) # Faster (111ms)
これにより、完全または部分的なマッピングでは、s.map(d) が s.replace(d) よりも一貫して高速であることがわかります。
結論
辞書の網羅度に応じて、s.map(d) または s.map(d).fillna(s['A']).astype(int) Pandas シリーズで効率的に値を置換するには、s.replace(d) よりも優先する必要があります。
以上がPandas シリーズでディクショナリを使用して値を置換すると遅いのはなぜですか?また、パフォーマンスを向上させるにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
