検索
ホームページバックエンド開発Python チュートリアルKNearest および SVM アルゴリズムを使用して、OpenCV-Python で基本的な数字認識 OCR システムを実装するにはどうすればよいですか?

How can I implement a basic digit recognition OCR system in OpenCV-Python using KNearest and SVM algorithms?

OpenCV-Python での単純な数字認識 OCR

概要

この記事は、ガイドを目的としています基本的な数字認識 OCR (光学式文字認識) の実装を通じて、 OpenCV-Pythonを使用したシステム。 KNearest と SVM という 2 つの一般的な機械学習アルゴリズムについて説明します。

質問 1: Letter_recognition.data ファイル

Letter_recognition.data は、OpenCV-Python に含まれるデータセットです。サンプル。これには、手書きの文字のコレクションと各文字の 16 個の特徴値が含まれています。このファイルは、さまざまな文字認識タスクのトレーニング データとして機能します。

独自の Letter_recognition.data の構築:

次の手順に従って、独自の Letter_recognition.data ファイルを作成できます。 :

  1. 各文字を として表現した文字データセットを準備します。 10x10 ピクセルの画像。
  2. 各画像からピクセル値を抽出して、100 個の値の特徴ベクトルを形成します。
  3. 各文字にラベル (A ~ Z に対応する 0 ~ 25) を手動で割り当てます。
  4. 各行の形式を指定して、特徴ベクトルとラベルをテキスト ファイルに保存します。

質問 2: KNearest の results.ravel()

results.ravel() は配列を変換します認識された数字を多次元配列からフラットな 1D 配列に変換します。これにより、結果の解釈と表示が容易になります。

質問 3: 単純な数字認識ツール

letter_recognition.data を使用して単純な数字認識ツールを作成するには、次の手順に従います。手順:

データ準備:

  • カスタムのletter_recognition.data ファイルをロードするか、OpenCV のサンプルを使用します。

トレーニング:

  • KNearest または SVM 分類器を作成するインスタンス。
  • letter_recognition.data からのサンプルと応答を使用して分類器をトレーニングします。

テスト:

  • 画像をロードします認識される数字が含まれています。
  • 画像を前処理して個々の情報を分離します数字。
  • 各数字を特徴ベクトル (100 ピクセル値) に変換します。
  • トレーニングされた分類子を使用して、各特徴ベクトルに最も近い一致を見つけ、対応する数字を表示します。

コード例:

import numpy as np
import cv2

# Load data
samples = np.loadtxt('my_letter_recognition.data', np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
responses = a[:,0]

# Create classifier
model = cv2.KNearest()
model.train(samples, responses)

# Load test image
test_img = cv2.imread('test_digits.png')

# Preprocess image
gray = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray, 255, 1, 1, 11, 2)

# Extract digits
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
digits = []
for cnt in contours:
    if cv2.contourArea(cnt) > 50:
        [x, y, w, h] = cv2.boundingRect(cnt)
        roi = thresh[y:y+h, x:x+w]
        roismall = cv2.resize(roi, (10, 10))
        digits.append(roismall)

# Recognize digits
results = []
for digit in digits:
    roismall = roismall.reshape((1, 100))
    roismall = np.float32(roismall)
    _, results, _, _ = model.find_nearest(roismall, k=1)
    results = results.ravel()
    results = [chr(int(res) + ord('A')) for res in results]

# Display results
output = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
for (digit, (x, y, w, h)) in zip(results, contours):
    cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 2)
    cv2.putText(output, str(digit), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

cv2.imshow('Output', output)
cv2.waitKey(0)

この例では、数字認識には KNearest を使用しますが、代わりに SVM 分類子を作成することで、SVM に置き換えることができます。

以上がKNearest および SVM アルゴリズムを使用して、OpenCV-Python で基本的な数字認識 OCR システムを実装するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
違いを理解する:ループ用とPythonのループ中違いを理解する:ループ用とPythonのループ中May 16, 2025 am 12:17 AM

ThedifferencebetweenaforloopandawhileloopinPythonisthataforloopisusedwhenthenumberofiterationsisknowninadvance,whileawhileloopisusedwhenaconditionneedstobecheckedrepeatedlywithoutknowingthenumberofiterations.1)Forloopsareidealforiteratingoversequence

Pythonループコントロール:VSの場合 - 比較Pythonループコントロール:VSの場合 - 比較May 16, 2025 am 12:16 AM

Pythonでは、ループの場合は、反復の数がわかっている場合に適していますが、ループは反復の数が不明で、より多くの制御が必要な場合に適しています。 1)ループの場合は、簡潔なコードとPythonicコードを使用して、リスト、文字列などのトラバーシーケンスに適しています。 2)条件に応じてループを制御する必要がある場合やユーザーの入力を待つ必要がある場合、ループがより適切ですが、無限のループを避けるために注意を払う必要があります。 3)パフォーマンスに関しては、FORループはわずかに高速ですが、通常、違いは大きくありません。適切なループタイプを選択すると、コードの効率と読みやすさが向上します。

Pythonの2つのリストを組み合わせる方法:5つの簡単な方法Pythonの2つのリストを組み合わせる方法:5つの簡単な方法May 16, 2025 am 12:16 AM

Pythonでは、リストを5つの方法でマージできます。1)シンプルで直感的なオペレーターを使用して、小さなリストに適しています。 2)extend()メソッドを使用して、頻繁に更新する必要があるリストに適した元のリストを直接変更します。 3)要素上でリストの分析式、簡潔、動作を使用する。 4)itertools.chain()関数を使用して効率的なメモリになり、大規模なデータセットに適しています。 5)要素をペアにする必要があるシーンに適しているように、 *演算子とzip()関数を使用します。各方法には特定の用途と利点と短所があり、選択する際にはプロジェクトの要件とパフォーマンスを考慮する必要があります。

ループvs while loop:python構文、ユースケースと例ループvs while loop:python構文、ユースケースと例May 16, 2025 am 12:14 AM

forlopseused whenthentheNumberofiterationsiskが、whileloopsareuseduntiLaconditionismet.1)forloopsareideal for sequenceslikelists、usingsintaxlike'forfruitinfruits:print(fruit) '.2)

Python ConcatenateリストのリストPython ConcatenateリストのリストMay 16, 2025 am 12:08 AM

toconcatenatealistoflistsinpython、useextend、listcomprehensions、itertools.chain、またはrecursivefunctions.1)extendistraighttraightrawardbutverbose.2)listcomprehesionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsised effective forlargerdatasets.3)itertools.chainmerymery-emery-efforience-forforladatas

Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。