Pandas でのデータ フレームのコピーの重要性を理解する
Pandas では、データ フレームの一部を選択するときに、「.copy()」を使用するのが一般的です。 ' メソッドを使用して、元のデータ フレームのコピーを作成します。このアプローチにより、サブセットに加えられた変更が親データ フレームに影響を与えないことが保証されます。
コピーを作成する理由
デフォルトでは、データ フレームにインデックスを付けると、コピーではなく、元のデータ フレームのビュー。これは、サブセットに加えられた変更は親データ フレームに直接影響することを意味します。親データ フレームの整合性を維持するには、「.copy()」メソッドを使用してコピーを作成することが不可欠です。
コピーしない場合の影響
次のコード スニペット:
df = pd.DataFrame({'x': [1, 2]}) df_sub = df.iloc[0:1] df_sub.x = -1
この例では、df_sub は df のビューです。結果として、df_sub.x を -1 に設定すると、df.x も変更されます:
print(df) x 0 -1 1 2
コピーの利点
データ フレームをコピーすると、親データ フレームが確実にコピーされます。手つかずのままです。これは、データ フレームに対して複数の操作が実行される場合に特に重要であり、後の分析や比較のために元のデータを保存することが重要です。
df_sub_copy = df.iloc[0:1].copy() df_sub_copy.x = -1 print(df) x 0 1 1 2
この変更されたコード スニペットでは、df_sub_copy は df のコピーです。結果として、df_sub_copy.x を変更しても df には影響しません。
注: 新しいバージョンの Pandas ではデータ フレームのインデックス作成の動作が変更されたことに注意することが重要です。 Pandas 1.0 以前では、データ フレームにインデックスを付けると、デフォルトでコピーが返されます。ただし、Pandas 1.1 以降では、インデックスを作成するとビューが返されます。バージョン間で一貫した動作を確保するには、データ フレームのサブセットを作成するときに常に '.copy()' メソッドを使用することをお勧めします。
以上がサブセットを選択するときに常に Pandas DataFrame をコピーする必要があるのはなぜですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

ホットトピック



