検索
ホームページバックエンド開発Python チュートリアルMatplotlib で散布図をアニメーション化して時変データを視覚化する方法

How to Animate Scatter Plots in Matplotlib to Visualize Time-Varying Data?

Matplotlib で散布図をアニメーション化する

散布図は、2 つ以上の変数間の関係を視覚化するのに便利なツールです。データが時間の経過とともに変化する場合、散布図をアニメーション化して関係がどのように変化するかを確認すると便利です。

位置、サイズ、色の更新

アニメーション化するには散布図の場合は、アニメーションの各フレームでポイントの位置、サイズ、色を更新する必要があります。これは、Scatter オブジェクトの set_offsets、set_sizes、set_array メソッドをそれぞれ使用して実行できます。

<code class="python">scat = plt.scatter(x, y, c=c)

# Update position
scat.set_offsets(new_xy)

# Update size
scat.set_sizes(new_sizes)

# Update color
scat.set_array(new_colors)</code>

FuncAnimation の使用

matplotlib の FuncAnimation クラス。アニメーション モジュールを使用すると、アニメーションの各フレームで散布図を自動的に更新できます。 init_func 引数はプロットを初期化するために 1 回呼び出され、更新関数はフレームごとに呼び出されます。

<code class="python">import matplotlib.animation as animation

def update(i):
    # Update data
    x, y, c = get_data(i)

    # Update plot
    scat.set_offsets(x, y)
    scat.set_array(c)

    return scat,

ani = animation.FuncAnimation(fig, update, interval=5)
plt.show()</code>

次の例では、次のアニメーションを作成します。点がランダムに移動し、時間の経過とともに色が変化する散布図:

<code class="python">import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

# Create random data
num_points = 50
xy = (np.random.rand(2, num_points) - 0.5) * 10
c = np.random.rand(num_points)

# Setup figure and axes
fig, ax = plt.subplots()
scat = ax.scatter(xy[0], xy[1], c=c, s=30)

# Define animation update function
def update(i):
    # Update data
    xy += np.random.rand(2, num_points) * 0.02
    c = np.random.rand(num_points)

    # Update plot
    scat.set_offsets(xy)
    scat.set_array(c)

    return scat,

# Create animation
ani = animation.FuncAnimation(fig, update, interval=10)
plt.show()</code>

このアニメーションは、ランダムに移動し、時間の経過とともに色が変化する 50 個の点の散布図を示します。

以上がMatplotlib で散布図をアニメーション化して時変データを視覚化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

Pythonの実行、それは何ですか?Pythonの実行、それは何ですか?May 14, 2025 am 12:06 AM

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Python:重要な機能は何ですかPython:重要な機能は何ですかMay 14, 2025 am 12:02 AM

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境