検索
ホームページJava&#&チュートリアルKafka で配信および注文されたメッセージを取得して消費する方法

Como conseguir y la consumición entregada y ordenada de mensajes con Kafka

Apache Kafka でイベントが完全に一貫した順序で送信および消費されるようにするには、メッセージの分割とコンシューマの割り当てがどのように機能するかを理解することが不可欠です。

Kafka でのパーティションの使用

  1. トピックの分割:

    • Kafka はメッセージをトピック内の パーティション に編成します。各パーティションは、受信したメッセージの順序を維持します。つまり、メッセージはそのパーティションに送信された順序で処理されます。
    • 順序を確保するには、同じコンテキスト (ユーザー ID やトランザクション ID など) に関連するすべてのメッセージが同じパーティションに送信されることが重要です。これは、メッセージの送信時にパーティション キーを使用することで実現されます。 Kafka はこのキーを使用して、ハッシュ関数を使用してメッセージを送信するパーティションを決定します[1][5]。
  2. メッセージキー:

    • メッセージを送信するときに、キーを指​​定できます。同じキーを持つすべてのメッセージは同じパーティションに送信されるため、メッセージは生成されたのと同じ順序で消費されます。たとえば、ユーザー ID がキーとして使用される場合、そのユーザーに関連するすべてのイベントは同じパーティションに移動します。

消費者団体

  1. 消費者割り当て:

    • Kafka のコンシューマは、コンシューマ グループ にグループ化されます。各グループには複数のコンシューマを含めることができますが、各パーティションを一度に読み取ることができるのは、グループ内の 1 人のコンシューマのみです。
    • これは、パーティションより多くのコンシューマがある場合、一部のコンシューマが非アクティブになることを意味します。順序を維持し、効率を最大化するには、少なくともグループ内のコンシューマーの数と同じ数のパーティションを作成することをお勧めします。
  2. オフセット管理:

    • Kafka は、オフセット を使用して各コンシューマーの読み取り状態を保存します。これは、パーティション内の各メッセージの増分数値識別子です。これにより、消費者は障害が発生した場合に中断したところから再開できます。

追加の戦略

  • 過負荷の回避: パーティション キーを選択するときは、一部のパーティションが過負荷になり、他のパーティションが十分に活用されていないことを避けるためにトラフィック分散を考慮することが重要です。
  • レプリケーションとフォールト トレランス: パーティションに対して適切なレプリケーション (1 より大きい) を構成してください。これにより、可用性が向上するだけでなく、障害に対するシステムの回復力も向上します。

Avro を使用して Kafka でメッセージの生成と消費のシステムを実装し、メッセージが順序どおりに処理され、起こり得る失敗を処理できるようにするための完全な例を次に示します。これには、Avro スキーマの定義、プロデューサー コードとコンシューマー コード、エラー処理の戦略が含まれます。
アブロスキーム
まず、ペイロードの Avro スキーマを定義します。メッセージの構造を記述する user_signed_up.avsc というファイルを作成します。

{
  "type": "record",
  "name": "UserSignedUp",
  "namespace": "com.example",
  "fields": [
    { "name": "userId", "type": "int" },
    { "name": "userEmail", "type": "string" },
    { "name": "timestamp", "type": "string" } // Formato ISO 8601
  ]
}

鍵の生成
メッセージの生成と消費の順序を確保するために、message-type-date として構造化されたキーを使用します (例: user-signed-up-2024-11-04)。
プロデューサー カフカ
以下は、Avro スキームを使用して Kafka にメッセージを送信する プロデューサー のコードです。

import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Properties;

public class AvroProducer {
    private final KafkaProducer<string byte> producer;
    private final Schema schema;

    public AvroProducer(String bootstrapServers) throws IOException {
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "io.confluent.kafka.serializers.KafkaAvroSerializer");

// Establecer la propiedad de reintentos, Número de reintentos
        properties.put(ProducerConfig.RETRIES_CONFIG, 3); 
// Asegura que todos los réplicas reconozcan la escritura,
        properties.put(ProducerConfig.ACKS_CONFIG, "all"); 
// Solo un mensaje a la vez
properties.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, 1); 
// Habilitar idempotencia, no quiero enviar duplicados
properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true); 

        this.producer = new KafkaProducer(properties);
        this.schema = new Schema.Parser().parse(new File("src/main/avro/user_signed_up.avsc"));
    }

    public void sendMessage(String topic, int userId, String userEmail) {
        GenericRecord record = new GenericData.Record(schema);
        record.put("userId", userId);
        record.put("userEmail", userEmail);
        record.put("timestamp", java.time.Instant.now().toString());

        String key = String.format("user-signed-up-%s", java.time.LocalDate.now());

        ProducerRecord<string byte> producerRecord = new ProducerRecord(topic, key, serialize(record));

        producer.send(producerRecord, (metadata, exception) -> {
            if (exception != null) {
                exception.printStackTrace();
**handleFailure(exception, producerRecord);
**            } else {
                System.out.printf("Mensaje enviado a la partición %d con offset %d%n", metadata.partition(), metadata.offset());
            }
        });
    }

private void handleFailure(Exception exception, ProducerRecord<string byte> producerRecord) {
        // Log the error for monitoring
        System.err.println("Error sending message: " + exception.getMessage());

        // Implement local persistence as a fallback
        saveToLocalStorage(producerRecord);

        // Optionally: Notify an external monitoring system or alert
    }

    private void saveToLocalStorage(ProducerRecord<string byte> record) {
        try {
            // Persist the failed message to a local file or database for later processing
            Files.write(new File("failed_messages.log").toPath(), 
                         (record.key() + ": " + new String(record.value()) + "\n").getBytes(), 
                         StandardOpenOption.CREATE, 
                         StandardOpenOption.APPEND);
            System.out.println("Mensaje guardado localmente para reenvío: " + record.key());
        } catch (IOException e) {
            System.err.println("Error saving to local storage: " + e.getMessage());
        }
    }

    private byte[] serialize(GenericRecord record) {
        // Crear un ByteArrayOutputStream para almacenar los bytes serializados
    ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
    // Crear un escritor de datos para el registro Avro
    DatumWriter<genericrecord> datumWriter = new GenericDatumWriter(record.getSchema());

    // Crear un encoder para escribir en el ByteArrayOutputStream
    Encoder encoder = EncoderFactory.get().binaryEncoder(outputStream, null);

    try {
        // Escribir el registro en el encoder
        datumWriter.write(record, encoder);
        // Finalizar la escritura
        encoder.flush();
    } catch (IOException e) {
        throw new AvroSerializationException("Error serializing Avro record", e);
    }

    // Devolver los bytes serializados
    return outputStream.toByteArray();
    }

    public void close() {
        producer.close();
    }
}
</genericrecord></string></string></string></string>

再試行に関する考慮事項
**再試行を有効にする場合、適切に処理しないとメッセージの順序が変更されるリスクがあることに注意することが重要です。
これを回避するには:
**max.in.flight.requests.per.connection
: このプロパティを 1 に設定すると、メッセージが一度に 1 つずつ送信され、順番に処理されるようになります。ただし、これはパフォーマンスに影響を与える可能性があります。
この構成と適切なエラー処理により、Kafka プロデューサがより堅牢になり、必要な順序を維持しながらメッセージ生成の障害を処理できるようになります。

**Kafka コンシューマー
**メッセージを読んで処理するコンシューマ:

import org.apache.avro.Schema;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.DatumReader;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.Properties;

public class AvroConsumer {
    private final KafkaConsumer<string byte> consumer;
    private final Schema schema;

    public AvroConsumer(String bootstrapServers, String groupId) throws IOException {
        Properties properties = new Properties();
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "io.confluent.kafka.serializers.KafkaAvroDeserializer");

        this.consumer = new KafkaConsumer(properties);
        this.schema = new Schema.Parser().parse(new File("src/main/avro/user_signed_up.avsc"));
    }

    public void consume(String topic) {
        consumer.subscribe(Collections.singletonList(topic));

        while (true) {
            ConsumerRecords<string byte> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<string byte> record : records) {
                try {
                    processMessage(record.value());
                } catch (Exception e) {
                    handleProcessingError(e, record);
                }
            }
        }
    }

    private void processMessage(byte[] data) throws IOException {
        DatumReader<genericrecord> reader = new GenericDatumReader(schema);
        var decoder = DecoderFactory.get().binaryDecoder(data, null);
        GenericRecord record = reader.read(null, decoder);

        System.out.printf("Consumido mensaje: %s - %s - %s%n", 
            record.get("userId"), 
            record.get("userEmail"), 
            record.get("timestamp"));
    }

    private void handleProcessingError(Exception e, ConsumerRecord<string byte> record) {
        System.err.println("Error processing message: " + e.getMessage());

        // Implement logic to save failed messages for later processing
        saveFailedMessage(record);
    }

    private void saveFailedMessage(ConsumerRecord<string byte> record) {
        try {
            // Persist the failed message to a local file or database for later processing
            Files.write(new File("failed_consumed_messages.log").toPath(), 
                         (record.key() + ": " + new String(record.value()) + "\n").getBytes(), 
                         StandardOpenOption.CREATE,
                         StandardOpenOption.APPEND);
            System.out.println("Mensaje consumido guardado localmente para re-procesamiento: " + record.key());
        } catch (IOException e) {
            System.err.println("Error saving consumed message to local storage: " + e.getMessage());
        }
    }

    public void close() {
        consumer.close();
    }
}

</string></string></genericrecord></string></string></string>

キーの現実的な例
多くの異なるイベントと多くの異なるパーティションがある環境では、現実的なキーは次のようになります。

{
  "type": "record",
  "name": "UserSignedUp",
  "namespace": "com.example",
  "fields": [
    { "name": "userId", "type": "int" },
    { "name": "userEmail", "type": "string" },
    { "name": "timestamp", "type": "string" } // Formato ISO 8601
  ]
}

これにより、特定の日付の特定のタイプに関連するすべてのイベントを同じパーティションに送信し、順番に処理できます。さらに、必要に応じて詳細 (セッション ID やトランザクション ID など) を含めることでキーを多様化できます。
Avro を使用して Kafka で障害を処理し、メッセージの順序を確保するためのこの実装と戦略により、イベントを管理するための堅牢で効率的なシステムを構築できます。

現在は、より有能な Kafka プロデューサー兼コンシューマーです。

サーキット ブレーカー、ローカル永続性、DLQ を備えた Kafka プロデューサー。

import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Properties;

public class AvroProducer {
    private final KafkaProducer<string byte> producer;
    private final Schema schema;

    public AvroProducer(String bootstrapServers) throws IOException {
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "io.confluent.kafka.serializers.KafkaAvroSerializer");

// Establecer la propiedad de reintentos, Número de reintentos
        properties.put(ProducerConfig.RETRIES_CONFIG, 3); 
// Asegura que todos los réplicas reconozcan la escritura,
        properties.put(ProducerConfig.ACKS_CONFIG, "all"); 
// Solo un mensaje a la vez
properties.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, 1); 
// Habilitar idempotencia, no quiero enviar duplicados
properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true); 

        this.producer = new KafkaProducer(properties);
        this.schema = new Schema.Parser().parse(new File("src/main/avro/user_signed_up.avsc"));
    }

    public void sendMessage(String topic, int userId, String userEmail) {
        GenericRecord record = new GenericData.Record(schema);
        record.put("userId", userId);
        record.put("userEmail", userEmail);
        record.put("timestamp", java.time.Instant.now().toString());

        String key = String.format("user-signed-up-%s", java.time.LocalDate.now());

        ProducerRecord<string byte> producerRecord = new ProducerRecord(topic, key, serialize(record));

        producer.send(producerRecord, (metadata, exception) -> {
            if (exception != null) {
                exception.printStackTrace();
**handleFailure(exception, producerRecord);
**            } else {
                System.out.printf("Mensaje enviado a la partición %d con offset %d%n", metadata.partition(), metadata.offset());
            }
        });
    }

private void handleFailure(Exception exception, ProducerRecord<string byte> producerRecord) {
        // Log the error for monitoring
        System.err.println("Error sending message: " + exception.getMessage());

        // Implement local persistence as a fallback
        saveToLocalStorage(producerRecord);

        // Optionally: Notify an external monitoring system or alert
    }

    private void saveToLocalStorage(ProducerRecord<string byte> record) {
        try {
            // Persist the failed message to a local file or database for later processing
            Files.write(new File("failed_messages.log").toPath(), 
                         (record.key() + ": " + new String(record.value()) + "\n").getBytes(), 
                         StandardOpenOption.CREATE, 
                         StandardOpenOption.APPEND);
            System.out.println("Mensaje guardado localmente para reenvío: " + record.key());
        } catch (IOException e) {
            System.err.println("Error saving to local storage: " + e.getMessage());
        }
    }

    private byte[] serialize(GenericRecord record) {
        // Crear un ByteArrayOutputStream para almacenar los bytes serializados
    ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
    // Crear un escritor de datos para el registro Avro
    DatumWriter<genericrecord> datumWriter = new GenericDatumWriter(record.getSchema());

    // Crear un encoder para escribir en el ByteArrayOutputStream
    Encoder encoder = EncoderFactory.get().binaryEncoder(outputStream, null);

    try {
        // Escribir el registro en el encoder
        datumWriter.write(record, encoder);
        // Finalizar la escritura
        encoder.flush();
    } catch (IOException e) {
        throw new AvroSerializationException("Error serializing Avro record", e);
    }

    // Devolver los bytes serializados
    return outputStream.toByteArray();
    }

    public void close() {
        producer.close();
    }
}
</genericrecord></string></string></string></string>

DLQ 管理を備えた Kafka コンシューマ。

import org.apache.avro.Schema;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.DatumReader;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.Properties;

public class AvroConsumer {
    private final KafkaConsumer<string byte> consumer;
    private final Schema schema;

    public AvroConsumer(String bootstrapServers, String groupId) throws IOException {
        Properties properties = new Properties();
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "io.confluent.kafka.serializers.KafkaAvroDeserializer");

        this.consumer = new KafkaConsumer(properties);
        this.schema = new Schema.Parser().parse(new File("src/main/avro/user_signed_up.avsc"));
    }

    public void consume(String topic) {
        consumer.subscribe(Collections.singletonList(topic));

        while (true) {
            ConsumerRecords<string byte> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<string byte> record : records) {
                try {
                    processMessage(record.value());
                } catch (Exception e) {
                    handleProcessingError(e, record);
                }
            }
        }
    }

    private void processMessage(byte[] data) throws IOException {
        DatumReader<genericrecord> reader = new GenericDatumReader(schema);
        var decoder = DecoderFactory.get().binaryDecoder(data, null);
        GenericRecord record = reader.read(null, decoder);

        System.out.printf("Consumido mensaje: %s - %s - %s%n", 
            record.get("userId"), 
            record.get("userEmail"), 
            record.get("timestamp"));
    }

    private void handleProcessingError(Exception e, ConsumerRecord<string byte> record) {
        System.err.println("Error processing message: " + e.getMessage());

        // Implement logic to save failed messages for later processing
        saveFailedMessage(record);
    }

    private void saveFailedMessage(ConsumerRecord<string byte> record) {
        try {
            // Persist the failed message to a local file or database for later processing
            Files.write(new File("failed_consumed_messages.log").toPath(), 
                         (record.key() + ": " + new String(record.value()) + "\n").getBytes(), 
                         StandardOpenOption.CREATE,
                         StandardOpenOption.APPEND);
            System.out.println("Mensaje consumido guardado localmente para re-procesamiento: " + record.key());
        } catch (IOException e) {
            System.err.println("Error saving consumed message to local storage: " + e.getMessage());
        }
    }

    public void close() {
        consumer.close();
    }
}

</string></string></genericrecord></string></string></string>
user-signed-up-2024-11-04
order-created-2024-11-04
payment-processed-2024-11-04

コードの説明
サーキットブレーカー:
Resilience4j は、プロデューサーのブレーカー回路を管理するために使用されます。故障率の閾値とオープン状態での待ち時間を設定します。
ローカル永続性と DLQ:
失敗したメッセージは、ローカル ファイル (failed_messages.log) とエラー キュー (dead_letter_queue.log) の両方に保存されます。
エラー処理:
プロデューサーとコンシューマーでは、エラーが適切に処理され、ログに記録されます。
DLQ 処理:
コンシューマーは、メイン トピックからのメッセージを消費した後、DLQ に保存されたメッセージも処理します。
ロギング:
System.err および System.out メッセージは、エラーと重要なイベントを記録するために使用されます。
最終的な考慮事項
この実装では:
これにより、メッセージが復元力のある方法で送信および処理されることが保証されます。
一時的または永続的なエラーに対して適切な処理が提供されます。
ロジックにより、Dead Letter Queue を使用することで効果的な回復が可能になります。
ブレーカー回路は、長期にわたる障害が発生した場合にシステムが飽和状態になるのを防ぎます。
このアプローチにより、Kafka でのメッセージの秩序ある配信を維持しながら、物理的および論理的問題を処理できる堅牢なシステムが作成されます。

以上がKafka で配信および注文されたメッセージを取得して消費する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか?Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか?Mar 17, 2025 pm 05:35 PM

Javaのクラスロードには、ブートストラップ、拡張機能、およびアプリケーションクラスローダーを備えた階層システムを使用して、クラスの読み込み、リンク、および初期化が含まれます。親の委任モデルは、コアクラスが最初にロードされ、カスタムクラスのLOAに影響を与えることを保証します

カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか?カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか?Mar 17, 2025 pm 05:44 PM

この記事では、カフェインとグアバキャッシュを使用してJavaでマルチレベルキャッシュを実装してアプリケーションのパフォーマンスを向上させています。セットアップ、統合、パフォーマンスの利点をカバーし、構成と立ち退きポリシー管理Best Pra

Javaで機能的なプログラミング技術を実装するにはどうすればよいですか?Javaで機能的なプログラミング技術を実装するにはどうすればよいですか?Mar 11, 2025 pm 05:51 PM

この記事では、Lambda式、Streams API、メソッド参照、およびオプションを使用して、機能プログラミングをJavaに統合することを調べます。 それは、簡潔さと不変性を通じてコードの読みやすさと保守性の改善などの利点を強調しています

キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか?キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか?Mar 17, 2025 pm 05:43 PM

この記事では、キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPAを使用することについて説明します。潜在的な落とし穴を強調しながら、パフォーマンスを最適化するためのセットアップ、エンティティマッピング、およびベストプラクティスをカバーしています。[159文字]

高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか?高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか?Mar 17, 2025 pm 05:46 PM

この記事では、Javaプロジェクト管理、自動化の構築、依存関係の解像度にMavenとGradleを使用して、アプローチと最適化戦略を比較して説明します。

非ブロッキングI/OにJavaのNIO(新しい入出力)APIを使用するにはどうすればよいですか?非ブロッキングI/OにJavaのNIO(新しい入出力)APIを使用するにはどうすればよいですか?Mar 11, 2025 pm 05:51 PM

この記事では、単一のスレッドで複数の接続を効率的に処理するためにセレクターとチャネルを使用して、非ブロッキングI/O用のJavaのNIO APIについて説明します。 プロセス、利点(スケーラビリティ、パフォーマンス)、および潜在的な落とし穴(複雑さ、

適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか?適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか?Mar 17, 2025 pm 05:45 PM

この記事では、MavenやGradleなどのツールを使用して、適切なバージョン化と依存関係管理を使用して、カスタムJavaライブラリ(JARファイル)の作成と使用について説明します。

ネットワーク通信にJavaのソケットAPIを使用するにはどうすればよいですか?ネットワーク通信にJavaのソケットAPIを使用するにはどうすればよいですか?Mar 11, 2025 pm 05:53 PM

この記事では、ネットワーク通信のためのJavaのソケットAPI、クライアントサーバーのセットアップ、データ処理、リソース管理、エラー処理、セキュリティなどの重要な考慮事項をカバーしています。 また、パフォーマンスの最適化手法も調査します

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、