検索
ホームページバックエンド開発Python チュートリアル単語頻度と動的プログラミングを使用して、スペースのないテキストを効果的に単語にトークン化するにはどうすればよいでしょうか?

How can we effectively tokenize unspaced text into words using word frequency and dynamic programming?

効率的なアルゴリズムを使用した、スペースのないテキストの単語へのトークン化

自然言語処理の領域で、文字の連続ストリームを分割する機能意味のある言葉に変えることが重要です。トークン化として知られるこのプロセスは、スペースや区切り文字のないテキストを扱う場合に特に困難です。

チャレンジ ステートメント

当面のタスクには、次のような入力文字列の分割が含まれます。 「tableapplechairtablecupboard...」を単語のリストに組み込みます。シーケンスが複数の単語を形成する可能性があるあいまいな部分文字列の可能性を考慮します (たとえば、「食器棚」は「カップ」または「ボード」になる可能性があります)。

アルゴリズム: 単語の頻度を利用する

各位置で可能な限り長い単語を繰り返し識別する単純なアプローチでは、現実世界のシナリオでは満足のいく結果が得られません。この制限を克服するために、単語の頻度分布を組み込んだアルゴリズムを利用します。

単語の頻度のモデリング

単語の頻度は、確率が次のように規定されている Zipf の法則に従うと仮定します。 n 番目に頻繁に出現する単語に遭遇する確率は、約 1/(n * log(N)) です。ここで、N は言語内の単語の総数です。この関係をエンコードする事前に計算されたコスト辞書を使用すると、潜在的な各単語候補にコストを割り当てることができます。

動的プログラミング アプローチ

最適な単語セグメンテーションを決定するには、次のようにします。動的プログラミングを採用します。入力文字列を反復処理して、潜在的な各分割ポイントのランニングコスト値を維持します。各位置で、文字列の末尾から始まる候補単語を評価し、コストが最も低い分割を選択します。

アルゴリズムの実装

提供された Python コードは、次のことを提供します。このアルゴリズムの簡潔な実装:

<code class="python">from math import log

# Precomputed word cost dictionary using Zipf's law
wordcost = ...

# Helper function to find the best word match based on cost
def best_match(i):
    ...

# Function to infer spaces in the input string using dynamic programming
def infer_spaces(s):
    ...</code>

使用例

このコードを利用するには、次のように連続テキスト文字列を入力するだけです:

<code class="python">s = 'thumbgreenappleactiveassignmentweeklymetaphor'
print(infer_spaces(s))</code>

結果と評価

このアルゴリズムは、限られた単語辞書でも優れたパフォーマンスを示します。複雑なテキストを高精度で正常にトークン化します。

以上が単語頻度と動的プログラミングを使用して、スペースのないテキストを効果的に単語にトークン化するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール