検索
ホームページバックエンド開発Python チュートリアル単語頻度と動的プログラミングを使用して、スペースのないテキストを効果的に単語にトークン化するにはどうすればよいでしょうか?

How can we effectively tokenize unspaced text into words using word frequency and dynamic programming?

効率的なアルゴリズムを使用した、スペースのないテキストの単語へのトークン化

自然言語処理の領域で、文字の連続ストリームを分割する機能意味のある言葉に変えることが重要です。トークン化として知られるこのプロセスは、スペースや区切り文字のないテキストを扱う場合に特に困難です。

チャレンジ ステートメント

当面のタスクには、次のような入力文字列の分割が含まれます。 「tableapplechairtablecupboard...」を単語のリストに組み込みます。シーケンスが複数の単語を形成する可能性があるあいまいな部分文字列の可能性を考慮します (たとえば、「食器棚」は「カップ」または「ボード」になる可能性があります)。

アルゴリズム: 単語の頻度を利用する

各位置で可能な限り長い単語を繰り返し識別する単純なアプローチでは、現実世界のシナリオでは満足のいく結果が得られません。この制限を克服するために、単語の頻度分布を組み込んだアルゴリズムを利用します。

単語の頻度のモデリング

単語の頻度は、確率が次のように規定されている Zipf の法則に従うと仮定します。 n 番目に頻繁に出現する単語に遭遇する確率は、約 1/(n * log(N)) です。ここで、N は言語内の単語の総数です。この関係をエンコードする事前に計算されたコスト辞書を使用すると、潜在的な各単語候補にコストを割り当てることができます。

動的プログラミング アプローチ

最適な単語セグメンテーションを決定するには、次のようにします。動的プログラミングを採用します。入力文字列を反復処理して、潜在的な各分割ポイントのランニングコスト値を維持します。各位置で、文字列の末尾から始まる候補単語を評価し、コストが最も低い分割を選択します。

アルゴリズムの実装

提供された Python コードは、次のことを提供します。このアルゴリズムの簡潔な実装:

<code class="python">from math import log

# Precomputed word cost dictionary using Zipf's law
wordcost = ...

# Helper function to find the best word match based on cost
def best_match(i):
    ...

# Function to infer spaces in the input string using dynamic programming
def infer_spaces(s):
    ...</code>

使用例

このコードを利用するには、次のように連続テキスト文字列を入力するだけです:

<code class="python">s = 'thumbgreenappleactiveassignmentweeklymetaphor'
print(infer_spaces(s))</code>

結果と評価

このアルゴリズムは、限られた単語辞書でも優れたパフォーマンスを示します。複雑なテキストを高精度で正常にトークン化します。

以上が単語頻度と動的プログラミングを使用して、スペースのないテキストを効果的に単語にトークン化するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

ループの場合、およびPythonのループ:それぞれの利点は何ですか?ループの場合、およびPythonのループ:それぞれの利点は何ですか?May 13, 2025 am 12:01 AM

forloopsareadvastountousforknowterations and sequences、offeringsimplicityandeadability;

Python:編集と解釈に深く掘り下げますPython:編集と解釈に深く掘り下げますMay 12, 2025 am 12:14 AM

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

Pythonは解釈されたものですか、それとも編集された言語であり、なぜそれが重要なのですか?Pythonは解釈されたものですか、それとも編集された言語であり、なぜそれが重要なのですか?May 12, 2025 am 12:09 AM

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

ループ対pythonのループの場合:説明されたキーの違いループ対pythonのループの場合:説明されたキーの違いMay 12, 2025 am 12:08 AM

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

ループのために:実用的なガイドループのために:実用的なガイドMay 12, 2025 am 12:07 AM

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい