検索
ホームページバックエンド開発Python チュートリアルPython の文字列連結の最適化は大きな文字列にも適用されますか?

Does Python's string concatenation optimization apply to large strings?

Python で文字列を別の文字列に効率的に追加する方法

Python では、文字列を ' ' 演算子で連結するのが一般的なタスクです。次のコードは単純ですが、

<code class="python">var1 = "foo"
var2 = "bar"
var3 = var1 + var2</code>

特に大きな文字列や繰り返しの連結の場合、効率に関して疑問が生じます。

インプレース文字列拡張

幸いなことに、CPython は文字列連結の効率を高める最適化を実装しました。文字列への参照が 1 つだけ存在し、その文字列に別の文字列が追加される場合、CPython は元の文字列をその場で拡張しようとします。この最適化により、操作は O(n) で償却されます。

たとえば、次のコードは以前は O(n^2) でした:

<code class="python">s = ""
for i in range(n):
    s += str(i)</code>

しかし、最適化により、現在は O(n^2) でした。 O(n) で実行されます。

Python の実装詳細

次に、最適化を示す Python C ソース コードの抜粋を示します。

<code class="c">int
_PyBytes_Resize(PyObject **pv, Py_ssize_t newsize)
{
    /* ... */
    *pv = (PyObject *)
        PyObject_REALLOC((char *)v, PyBytesObject_SIZE + newsize);
    if (*pv == NULL) {
        PyObject_Del(v);
        PyErr_NoMemory();
        return -1;
    }
    _Py_NewReference(*pv);
    sv = (PyBytesObject *) *pv;
    Py_SIZE(sv) = newsize;
    sv->ob_sval[newsize] = '<pre class="brush:php;toolbar:false"><code class="python">import timeit

s = ""
for i in range(10):
    s += 'a'

# Time the concatenation of 10 'a' characters
t1 = timeit.timeit(stmt="""s = ""
for i in range(10):
    s += 'a'""", globals=globals(), number=1000000)

# Time the concatenation of 100 'a' characters
t2 = timeit.timeit(stmt="""s = ""
for i in range(100):
    s += 'a'""", globals=globals(), number=100000)

# Time the concatenation of 1000 'a' characters
t3 = timeit.timeit(stmt="""s = ""
for i in range(1000):
    s += 'a'""", globals=globals(), number=10000)

print("10 'a':", t1)
print("100 'a':", t2)
print("1000 'a':", t3)</code>
'; sv->ob_shash = -1; /* invalidate cached hash value */ return 0; }

この関数では、文字列オブジェクトのサイズ変更が可能ですが、それへの参考資料が 1 つあります。文字列のサイズは、元のメモリ位置を維持しながら変更されます。

注意

この最適化は Python 仕様の一部ではないことに注意することが重要です。これは CPython インタプリタでのみ実装されます。 PyPy や Jython などの他の Python 実装は、異なるパフォーマンス特性を示す場合があります。

経験的テスト

経験的に、最適化は次のコードのパフォーマンスで明らかです。

結果は、次の数に応じて実行時間が大幅に増加することを示しています。

結論

一方、Python のインプレース文字列拡張最適化により、特定の領域では文字列連結の効率が大幅に向上します。シナリオでは、この実装の制限を理解することが不可欠です。大きな文字列の場合、またはメモリ管理の考慮事項が最重要である場合、最適なパフォーマンスを達成するには、文字列操作の代替方法が必要になる場合があります。

以上がPython の文字列連結の最適化は大きな文字列にも適用されますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?May 03, 2025 am 12:11 AM

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。May 03, 2025 am 12:10 AM

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

Pythonアレイ内の要素のデータ型をどのように指定しますか?Pythonアレイ内の要素のデータ型をどのように指定しますか?May 03, 2025 am 12:06 AM

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?May 03, 2025 am 12:03 AM

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。May 03, 2025 am 12:01 AM

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

Pythonリストをどのようにスライスしますか?Pythonリストをどのようにスライスしますか?May 02, 2025 am 12:14 AM

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

Numpyアレイで実行できる一般的な操作は何ですか?Numpyアレイで実行できる一般的な操作は何ですか?May 02, 2025 am 12:09 AM

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Pythonを使用したデータ分析では、配列はどのように使用されていますか?Pythonを使用したデータ分析では、配列はどのように使用されていますか?May 02, 2025 am 12:09 AM

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境