検索
ホームページバックエンド開発Python チュートリアルNumPy スライスを使用してランダムな画像パッチを効率的にトリミングするにはどうすればよいですか?

How can I efficiently crop random image patches using NumPy slicing?

ランダムな画像トリミングに複数の Numpy スライスを効率的に使用する

概要:
機械学習とコンピューター ビジョンアプリケーションでは、画像のトリミングは、モデルのトレーニングまたは推論の前に画像を前処理するための重要なタスクです。トリミングは、関連する関心領域を抽出し、大きな画像を処理する際の計算の複雑さを軽減するのに役立ちます。

効率的なトリミング アプローチ:
質問に示されているように、ループベースのトリミング方法は、大規模なデータセットの場合、計算効率が低くなります。これに対処するために、numpy の高度なインデックス作成と strided ベースのメソッドを利用できます。

Strided ベースのメソッドの活用:
Numpy の np.lib.stride_tricks.as_strided 関数を使用すると、strided を抽出できます。データをコピーせずに配列を表示します。この手法を scikit-image の view_as_windows 関数と組み合わせると、入力画像配列上にスライディング ウィンドウを作成できます。

スライディング ウィンドウの説明:
view_as_windows は、入力にビューの配列を作成します。配列。各ビューはスライディング ウィンドウを表します。 window_shape 引数は、スライディング ウィンドウの形状を指定します。スライドさせたくない軸に 1 を渡すことで、シングルトン ディメンションを作成できます。これに後でインデックスを付けて、必要なトリミングされたウィンドウを取得できます。

コードの実装:
次のコードは、スライディング ウィンドウを使用した効率的なトリミング アプローチを示しています。

<code class="python">from skimage.util.shape import view_as_windows

# Get sliding windows
w = view_as_windows(X, (1, 16, 16, 1))[..., 0, :, :, 0]

# Index and retrieve specific windows
out = w[np.arange(X.shape[0]), x, y]

# Rearrange format
out = out.transpose(0, 2, 3, 1)</code>

このコードは、画像ごとにランダムな (x_offset, y_offset) ペアを効率的に生成し、対応する 16x16 のトリミングを形状の配列 (4, 16, 16, 3) 不必要なメモリ オーバーヘッドを発生させることなく。

以上がNumPy スライスを使用してランダムな画像パッチを効率的にトリミングするにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonの数学モジュール:統計Pythonの数学モジュール:統計Mar 09, 2025 am 11:40 AM

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

人気のあるPythonライブラリとその用途は何ですか?人気のあるPythonライブラリとその用途は何ですか?Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Mar 10, 2025 pm 06:48 PM

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

Pythonの仮想環境の目的を説明してください。Pythonの仮想環境の目的を説明してください。Mar 19, 2025 pm 02:27 PM

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)