ホームページ >バックエンド開発 >Python チュートリアル >NumPy で 1D 配列のローリング ウィンドウ計算を効率的に実行するにはどうすればよいですか?
NumPy での 1D 配列のローリング ウィンドウ計算の実装
ローリング ウィンドウ計算では、指定された配列のサブセットに関数を繰り返し適用します。この文脈での質問は、Python ライブラリ NumPy で 1 次元 (1D) 配列のローリング ウィンドウ計算を実行する効率的な方法を見つけることに焦点を当てています。
これを実現するには、ブログの Rolling_window 関数を利用できます。問題で参照されている投稿。ただし、この関数は多次元配列用に設計されているため、1D 配列を操作するには多少の調整が必要です。
重要なアイデアは、目的の関数を rolling_window 関数の結果に適用することです。たとえば、ローリング標準偏差を計算する場合は、次のコードを使用できます。
<code class="python">import numpy as np def rolling_window(a, window): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) observations = [1, 2, 3, 4, 5, 6, 7] n = 3 # window length rolling_std = np.std(rolling_window(observations, n), 1)</code>
この例では、rolling_window 関数は、観測値配列上にサイズ n のスライディング ウィンドウを作成します。次に、np.std 関数は各ウィンドウの標準偏差を計算し、その結果を Rolling_std 配列に保存します。
このアプローチでは、NumPy の効率的な配列操作を利用して、明示的な Python ループを必要とせずにローリング ウィンドウの計算をシームレスに実行します。
以上がNumPy で 1D 配列のローリング ウィンドウ計算を効率的に実行するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。