Python で複数の Open ステートメントを使用してファイル処理を改善する方法
Python では、open() 関数はファイル入力のための多用途ツールですそして出力します。複数のファイルを操作する場合、リソースを適切に管理するために with ステートメントを利用すると有利です。
状況:
ファイルから名前を読み取り、特定の名前に追加のテキストを追加します。現在の実装ではファイルを順番に開きますが、これは最適ではない可能性があります。
解決策:
Python では、カンマ区切りで 1 つの with ステートメント内で複数の open() ステートメントを使用できます。彼ら。これにより、複数のファイルを同時に処理できるようになり、リソース管理が強化されます。
<code class="python">def filter(txt, oldfile, newfile): ''' Read a list of names from a file line by line into an output file. If a line begins with a particular name, insert a string of text after the name before appending the line to the output file. ''' with open(newfile, 'w') as outfile, open(oldfile, 'r', encoding='utf-8') as infile: for line in infile: if line.startswith(txt): line = line[0:len(txt)] + ' - Truly a great person!\n' outfile.write(line)</code>
補足:
- 戻り値のない関数から明示的に返す必要はありません。
- この機能は Python 2.7 および 3.1 以降で導入されました。
- Python バージョン 2.5 または 2.6 との互換性が必要な場合は、ステートメントでネストするか、contextlib.nested を使用することをお勧めします。
この方法でファイル処理を最適化することで、開発者はコードの可読性、リソース管理、全体的な効率を向上させることができます。
以上がPython で複数の `open()` ステートメントを使用してファイル処理を効率化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
