


インデックスによる DataFrame のマージ: 総合ガイド
インデックスに基づいて 2 つの DataFrame をマージすることは、一般的なデータ操作タスクです。ただし、マージが正しく行われないと、エラーや予期しない動作が発生する可能性があります。このガイドでは、インデックスによるマージのさまざまな方法を詳しく説明し、その主な違いと潜在的な落とし穴に焦点を当てます。
マージ関数について
Python の Pandas ライブラリでは、 DataFrame のマージには、merge、join、concat などのいくつかの関数を使用できます。各関数には独自のデフォルトの結合タイプがあります。
- merge: 内部結合
- join: 左結合
- concat: 外部結合
インデックスによるマージ
インデックスによって 2 つの DataFrame をマージするには、left_index パラメーターと right_index パラメーターを指定する必要があります。マージまたは結合関数で。これは、DataFrame の行ラベル (インデックス) を結合キーとして使用するように Pandas に指示します。
例:
次の 2 つの DataFrame について考えます:
<code class="python">df1 = pd.DataFrame({'a': range(6), 'b': [5, 3, 6, 9, 2, 4]}, index=list('abcdef')) df2 = pd.DataFrame({'c': range(4), 'd': [10, 20, 30, 40]}, index=list('abhi'))</code>
内部結合 (デフォルト):
マージ関数を使用して内部結合を実行するには:
<code class="python">pd.merge(df1, df2, left_index=True, right_index=True)</code>
出力:
a b c d a 0 5 0 10 b 1 3 1 20
左結合 (デフォルト):
結合関数を使用して左結合を実行するには:
<code class="python">df1.join(df2)</code>
出力:
a b c d a 0 5 0.0 10.0 b 1 3 1.0 20.0 c 2 6 NaN NaN d 3 9 NaN NaN e 4 2 NaN NaN f 5 4 NaN NaN
外部結合:
concat 関数を使用して外部結合を実行するには:
<code class="python">pd.concat([df1, df2], axis=1)</code>
出力:
a b c d a 0.0 5.0 0.0 10.0 b 1.0 3.0 1.0 20.0 c 2.0 6.0 NaN NaN d 3.0 9.0 NaN NaN e 4.0 2.0 NaN NaN f 5.0 4.0 NaN NaN h NaN NaN 2.0 30.0 i NaN NaN 3.0 40.0
重要な注意事項:
- 結合列のサイズがデータフレーム全体と比較して小さい場合、インデックスによる結合は効率的です。
- インデックスによる外部結合は計算コストがかかる可能性があります。
- 一般に、マージを実行する前にインデックスを列にシフトすることが良い方法であると考えられています。
以上がPandas でインデックスによって DataFrame をマージするにはどうすればよいですか?また、利用可能なマージにはどのような種類がありますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール
